
Empirical Evaluation of IC3-Based Model

Checking Techniques on Verilog RTL Designs
Aman Goel and Karem Sakallah

University of Michigan, Ann Arbor, USA

{amangoel,karem}@umich.edu

Introduction

Problem: Given a transition system TS (defined by formulas for the transition

relation T and the set of initial states I), check whether it meets a given safety

property P, and, if not, produce a counterexample demonstrating how TS

violates P.

Methodology: Use IC3-based techniques that perform property-directed

approximate reachability analysis using incremental SAT solving. IC3 derives

strengthening clauses from counterexamples-to-induction to incrementally

make P inductive, or derives a counterexample trace disproving the property.

Schematic diagram of model checking using IC3

Experimental Setup

We analyzed 535 safety checking problems from different sources:

opensource includes 141 problems from publicly available sources.

Problems include cores from picoJava, USB 1.1, CRC generation,

Huffman coding, mutual exclusion algorithms, simple microprocessor, etc.

industry includes 370 proprietary problems from real-world industry

designs, involving control-centric properties on large designs with wide

data paths.

crafted includes 24 synthetically created problems involving both control-

and data-centric properties.

We evaluated six techniques from 3 different tools:

From ABC:

pdr is one of the best implementations of bit-level IC3

dprove employs pre-processing (bounded model checking,

retiming, simulation, interpolation, etc.) followed by pdr

pdr-nct is pdr configured with improved generalization and

localization abstraction

From nuXmv:

nuxmv-ic3 performs bit-level IC3 with pre-processing (latch

equivalency, temporal decomposition)

nuxmv-ic3ia uses word-level IC3 with implicit predicate abstraction

From Averroes 2:

avr performs word-level IC3 with syntax-guided data abstraction

(avr-ic3sa-uf)

Results and Discussion

Time comparison (in seconds). avr’s times are better (resp. worse) above (resp. below) the diagonal

Take-away Points

R : Reachable set of states

C1, C2 : Counterexamples to induction

[P ˄ T ˄ ¬P’] is SAT Not Inductive

[¬C1 ˄ ¬C2 ˄ P ˄ T ˄ ¬P’] is UNSAT

Inductive

Solver calls comparison (SAT solver calls for pdr, SMT solver calls for avr and nuxmv-ic3ia)

For hardware, IC3 can be performed on the synthesized netlist (bit level)

using SAT solvers, or directly at the register-transfer level (word level) using a

variety of abstraction techniques and SMT solvers.

In this work, we rigorously evaluate different IC3-based techniques, including

both bit-level and word-level model checkers, and identify their benefits and

shortcomings, and opportunities for improving scalability.

Tool Solved Unique industry opensource crafted

pdr (B) 466 1 308 137 21

dprove (B) 477 3 315 138 24

pdr-nct (B) 466 1 308 137 21

nuxmv-ic3 (B) 385 0 228 134 23

nuxmv-ic3ia (W) 389 0 232 133 24

avr (W) 526 55 368 134 24

 Data abstraction using word-level information helped avr solve more

problems than any other solver, especially dominating in the industry

category.

 Word-level techniques require orders-of-magnitude fewer SMT solver calls

compared to the number of SAT solver calls made by bit-level techniques.

 Fewer solver calls is justified by strong word-level clause learning

performed by word-level techniques.

 Using word-level techniques has the additional advantage of producing

concise and informative word-level inductive invariants which can be easily

related to the Verilog RTL design.

 Pre-processing used by dprove is helpful, suggesting that pre-processing

techniques similar to ones at the bit level may further help scale word-level

techniques.

https://aman-goel.github.io/date19.html

 Word-level model checking has good potential to offer better scalability by

taking advantage of high-level information.

 Word-level techniques learn strong clauses by performing many fewer

solver checks.

 Pre-processing techniques and optimizations at the bit level can be

adapted for word-level techniques for better scalability.

Word-level Model Checking

 More Industry Problems Solved

 Fast

 SMT Solving

 Fewer Solver Calls

 Word-level Clause Learning

 Rich Inductive Invariant

 Data Abstraction

Limited Word-level Pre-

processing Techniques

industry opensource crafted

Number of reachability clauses Inductive invariant size

