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Abstract—IC3-based algorithms have emerged as effective
scalable approaches for hardware model checking. In this paper
we evaluate six implementations of IC3-based model checkers
on a diverse set of publicly-available and proprietary industrial
Verilog RTL designs. Four of the six verifiers we examined
operate at the bit-level and two employ abstraction to take
advantage of word-level RTL semantics. Overall, the word-level
verifier employing data abstraction outperformed the others,
especially on the large industrial designs. The analysis helped
us identify several key insights on the techniques underlying
these tools, their strengths and weaknesses, differences and
commonalities, and opportunities for improvement.

I. INTRODUCTION

IC3 [1] (also referred to as PDR [2]) has emerged as an ef-
fective model checking (MC) algorithm that uses incremental
SAT solving to perform property-directed approximate reacha-
bility analysis. Model checkers using IC3-based techniques at
the bit-level have shown exceptional performance in hardware
model checking competition [3]. However, bit-level analysis
can still face scalability issues, particularly when applied to
large word-level designs involving wide and complex data
operations. Several approaches have been proposed to extend
IC3-style algorithms for better scalability [4]-[9]. These ap-
proaches suggest different abstraction-refinement strategies to
reduce the burden on the reasoning engines. Some of these
approaches (like [4], [5]) exploit high-level information to
perform IC3 at the word-level, and have shown impressive
results. These techniques replace bit-level reasoning using SAT
solvers with word-level reasoning using SMT solvers [10].
In contrast to earlier studies where only bit-level problems
were analyzed (e.g. [3], [11]), this paper compares the behav-
ior of different IC3-based techniques on Verilog RTL designs.
We performed a rigorous evaluation on 535 Verilog RTL
instances including a variety of open-source designs and real-
world industrial problems. Our experiments resulted in several
key findings, most notably that word-level IC3 solvers can
handle designs that are beyond the reach of bit-level solvers.

II. BACKGROUND

Model checking can be defined as given a transition system
T (defined by a transition relation 7" and a set of initial states
I), check whether it meets a given specification P (referred as
property), and, if not, produce a counterexample demonstrating
how 7T violates P. Our focus in this paper will be on safety
properties defined on finite transition systems.
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The reader is referred to [1], [2] for a detailed description on
ideas underlying IC3. Let Ry, represent the set of states reach-
able from the initial states within k steps (k > 0). Property
holds if R, C P. Finding the exact set of reachable states is
intractable in practical systems. Instead, IC3 iteratively derives
overapproximations of Ry, (called frames F},) such that Fy = 1
and Ry C Fj. In its simplest form, the procedure requires two
major steps to prove a property:

« Initiation - Prove that the property is not trivially violated
iie. I C Pand I AT A —P’ is unsatisfiable (using primes
to denote next states).

o Consecution - Derive Fj...F,, such that F; C P and
F,y CF (i € {1, ..., n}) till two frames converge
(i.e. Fj = Fj4q for some j € {1, ..., n}). This is done
by iteratively deriving restrictions on frames using 1-step
backward reachability queries of type: can we reach a state
in cube ¢ from Fj in 1-step? (i.e. SAT ? [ Fx AT AC )

III. REVIEW OF IC3-BASED TECHNIQUES

Several techniques have emerged that extend bit-level IC3
engines to offer better performance. The authors of [7] use lazy
abstraction, the authors of [8] suggests using uninterpreted
functions (UFs) to abstract away expensive data operations,
while the authors in [9] use unconstrained new primary inputs
to abstract away parts of the system. All these approaches (
[7]-19]) use bit-level IC3 as the core engine.

Certain approaches suggest deploying IC3 at word-level
using SMT solvers. The authors in [4] use implicit abstraction,
perform word-level IC3, and refines the abstract system by
adding more predicates. The authors of [S] use data abstrac-
tion using UFs to perform IC3 in an abstract domain, and
refines the abstraction by adding word-level lemmas. Ref. [12]
presents a major upgrade on [5] with an improved abstraction-
refinement procedure. These approaches exploit the power of
SMT solvers in different ways to perform word-level clause
learning, and can offer better scalability than techniques that
rely on bit-level IC3.

IV. EXPERIMENTAL SETUP
We analyzed 535 safety checking problems (Verilog RTL files
with SystemVerilog assertions (SVA)) classified as follows:
o opensource: a set of 141 problems collected from bench-

mark suites accompanying tools vcegar [13] (23 problems),
v2c [14] (32 problems) and verilog2smv [15] (86 problems).



o industry: a set of 370 problems collected from industrial
collaborators!. Their code sizes between 109 and 22065
lines; # of flip-flops between 6 and 7249.

o crafted: a set of 24 simple problems synthetically created.

The six tools we evaluated in this experiment were:

o From ABC version 1.01 [16]:

— pdr: pdr is one of the best implementations of the IC3
algorithm at the bit-level.

— dprove: dprove employs a preprocessing stage using a
portfolio of techniques (bounded MC, retiming, simula-
tion, interpolation, etc.) with carefully-tuned heuristics to
quickly solve/reduce the problem. If the problem remains
unsolved, dprove invokes pdr on the reduced problem.

— pdr-nct: the -nct flags configure pdr to use better gener-
alization [17] and to enable localization abstraction [6].

e From nuXmv version 1.1.1 [18]:

— nuxmv-ic3: this is the bit-level IC3 implementation in
nuXmv based on simplic3 [11]. It starts with a preprocess-
ing step (latch equivalency and temporal decomposition)
followed by a state-of-the-art implementation of IC3.

— nuxmv-ic3ia: this is the word-level IC3 implementation
in nuXmv using implicit predicate abstraction [4].

e avr: Averroes 2 [12] is a word-level IC3 implementation
using data abstraction and is particularly suited for verifying
control-centric properties.

We set up the experiment as shown in Fig. 1. The Verilog
designs and SVA are parsed by yosys [19] which removes any
hierarchy and produces flat RTL. For the nuXmv tools and
avr, this flat RTL is syntactically translated into the equivalent
input formats used by these tools. For the ABC tools, yosys
synthesizes the RTL to a bit-level implementation.

All experiments were conducted on a cluster of 163 2.5
GHz Intel Xeon E5-2680v3 processors (cores) running 64-bit
Linux. Each run was given exclusive access to a single core,
with a memory limit of 16 GB and a time limit of 5 hours.
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Fig. 1: Verification tool-chain used

V. EXPERIMENTAL ANALYSIS

Due to space limitations we must limit the number of data
visualizations we produced for inclusion in this paper. We have
uploaded the raw data, details on input designs and numerous

'We obtained these designs under non-disclosure agreements and, unfortu-
nately, cannot make them publicly available.

plots to a publicly-accessible repository [20]. All plots exclude
runs in which a tool reported an error or ran out of memory,
and all runtimes refer to CPU time in seconds.

A. Aggregate results

Overall, each instance in the suite of 535 problems was
successfully solved by at least one tool. A total of 483
problems were proved safe and 52 problems proved unsafe.
Table I and Fig. 2 leads to the following observations:

« avr solved more problems than any other solver. It especially
dominated in the industry category, solving all but 2 with
55 of them uniquely solved. dprove marginally dominated
in the opensource category.

o Implicit predicate abstraction helped nuxmv-ic3ia solve 4
more problems from the industry category than its bit-level
version nuxmv-ic3.

o In general, the bit-level IC3 implementations in the ABC
tools performed significantly better than nuxmv-ic3.

B. Runtime comparison

The scatter plots in Fig. 3 compare avr’s runtime with the run-
times of the other tools leading to the following observations:

o For the vast majority of problems in the industry category,
avr is able to solve them much faster than the other tools.
These problems have wide data paths and expensive data
operations that cause the other tools to run slower and time
out in many cases, while data abstraction used by avr is
particularly effective.

e avr is not as effective in the opensource category, clearly
under performing the ABC tools. These problems involve
data-centric properties that are ill-suited for avr’s data
abstraction and cause avr to perform many expensive data
refinements to repair its initial abstraction.

Fig. 4 shows additional runtime comparisons that shed
further light on the behavior of these tools as follows:

o Interestingly, pdr-nct’s performance was almost indistin-
guishable from that of pdr (Fig. 4.a) suggesting that its extra
optimizations were not effective.

o Fig. 4b confirms our earlier observation that the ABC
tools, represented by pdr in this comparison, significantly
outperform nuxmv-ic3 in runtime on almost all categories.

o Fig. 4.c shows that nuxmv-ic3ia is usually faster than nuxmv-
ic3, especially for the industry category. This seems to
confirm that abstraction is critical for large-scale problems
that tend to tax the capacity of bit-level analysis.

o Fig. 4.d shows that for problems that can be solved during
the pre-processing stage of dprove, the runtime of pdr
without pre-processing can sometimes be faster! Still, pre-
processing does help, especially for the industrial problems.

o Fig. 4.e provides further evidence of the importance of
pre-processing. Specifically, in most cases where dprove
is faster than avr, it is because the problem is solved in
the preprocessing stage. This suggests that word-level pre-
processing techniques similar to the bit-level techniques
used in dprove may further help scale abstraction-based tools
such as nuxmv-ic3ia and avr.



C. Number of solver calls

Fig. 5 shows sample comparisons in the total number of solver

calls made by the tools. Generally speaking, these comparisons

correlate with the runtime comparisons in Fig. 3 and suggest
the following additional observations:

e avr requires orders of magnitude fewer solver calls in the
industry category. This is explained by the fact that the
properties being checked in this category seem to be weakly-
dependent on data state and that avr’s data abstraction elim-
inates much of the bit-level details leading to a significantly
simpler abstract transition system. These differences are
less pronounced between avr and the other word-level tool
nuxmv-ic3ia, suggesting that word-level reasoning scales
better than bit-level reasoning.

« In the opensource category, the mismatch between the data-
centric properties being checked and avr’s data abstraction
causes it to require more solver calls than the other tools.

o Surprsingly, pdr and nuxmv-ic3 differ significantly in the
number of solver calls, with nuxmv-ic3 requiring many more
solver calls. This could potentially be an artifact of the
synthesis tool chain used (Fig. 1) where yosys synthesizes
for pdr whereas nuXmv synthesizes for nuxmv-ic3. The dis-
crepancy could also be due to implementation choices such
as the SAT solver used, the cube generalization procedure,
preprocessing, etc., as indicated in [11]. For many other
cases, nuxmv-ic3 requires fewer solver calls compared to
pdr. However even for these cases, the runtime performance
of nuxmv-ic3 is worse than that of pdr implying that perhaps
a better SAT engine can benefit nuxmv-ic3.

o As expected, nuxmv-ic3ia requires fewer solver calls com-
pared to pdr confirming our earlier observation that word-
level reasoning can scale much better than bit-level.

D. Abstraction-refinement based techniques

Fig. 6.a-b compares the number of refinement iterations re-

quired by the tools that use an abstraction-refinement proce-

dure (pdr-nct, nuxmv-ic3ia and avr), yielding the following
observations:

e avr solves most of the industry problems without any
refinement (left edges of Fig. 6.a-b), showing the strength
of data abstraction and justifying previous observations.

o Fig. 6.b shows that nuxmv-ic3ia requires few refinement
iterations for most industry problems, with the numbers
much lower than of pdr-nct (Fig. 6.a).

E. Bit-level versus Word-level

Fig. 6.c-e compares different IC3 statistics between pdr (bit-
level IC3 engine) and avr (word-level IC3 with data abstrac-
tion). These plots indicate the following:

« In many cases, pdr makes orders of magnitude more coun-
terexample to induction (CTI) checks than avr and learns
many more clauses before solving the problem (Fig. 6.c-
d). This affirms why avr requires many fewer solver calls
compared to pdr (Fig. 5.a), and shows the strengths of using
a word-level IC3 procedure that can exploit the word-level
semantics to learn strong clauses.

e Some crafted and opensource problems require avr to
perform more CTI checks and clause learning compared to
pdr due to avr’s data abstraction being ineffective when the
property is data-dependent.

o Fig. 6.e compares the number of clauses in the inductive
invariant produced by the two tools (for cases where the
property is true). Again due to word-level clause learning,
avr learns a strong word-level inductive invariant with many
fewer clauses compared to pdr.

VI. CONCLUSIONS

Our goal in this preliminary study was to better understand
the landscape of IC3-based MC techniques by comparing not
just bit-level engines, but also word-level techniques to shed
light on their suitability for various types of MC problems.
Word-level IC3 engines add a layer of abstraction to lift the
reasoning above the bit-level, and takes advantage of the word-
level information to potentially scale to much larger designs.
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