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Abstract. While bit-level IC3-based algorithms for hardware model
checking represent a major advance over prior approaches, their reliance
on propositional clause learning poses scalability issues for RTL designs
with wide datapaths and complex word-level operations. In this paper we
present a novel technique that combines IC3 with syntax-guided abstrac-
tion (SA) to allow scalable word-level model checking using SMT solvers.
SA defines the abstraction implicitly from the syntax of the input prob-
lem, has high granularity and an abstract state-space size completely
independent of the bit widths of the design’s registers. We show how to
efficiently integrate IC3 with SA, and demonstrate its effectiveness on
a suite of open-source and industrial Verilog RTL designs. Additionally,
SA aligns easily with data abstraction using uninterpreted functions. We
demonstrate how IC3+SA with data abstraction allows reasoning that
is completely independent of the bit width of variables, and becomes
scalable irrespective of the state-space size or complexity of operations.

1 Introduction

IC3 [13] (also known as PDR [25]) is arguably the most successful technique for
hardware model checking. Bit-level engines using IC3 (e.g. ABC [8], IIMC [14],
PDTRAV [16], AVY [49]) have shown exceptional performance in hardware
model checking competitions (HWMCC) [10]. As the size and complexity of the
problem increases, the bit-level IC3 algorithm suffers from two main scalability
issues: poor SAT solver performance, and learning too many weak propositional
frame restrictions. Several techniques have been proposed to address these chal-
lenges (e.g. [48,20,50,40,31,32,33]), including different ways of adding a layer of
abstraction refinement [37,22] to reduce the burden on reasoning engines. Ap-
proaches like [20,40] suggest raising IC3 to the word level by exploiting high-level
information missing at the bit level. These techniques replace bit-level reasoning
using SAT solvers with word-level clause learning in first order logic (FOL) using
SMT [7] solvers.

The Averroes system [40,39] demonstrated how EUF abstraction [15,5,4] can
be exploited to perform word-level IC3 on control-centric Verilog RTL designs.
The technique performed backward reachability using a weakest precondition al-
gorithm, effectively causing an implicit unrolling of the transition relation which
leads to poor performance and possible non-termination in some situations. This
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typically happens when the property being checked is strongly dependent on data
operations, for which EUF abstraction is ill-suited, and leads to an excessive
number of data refinement iterations to repair the abstraction.

In this paper we address these issues by extending the Averroes approach
beyond control-centric problems using syntax-guided abstraction (SA). Inspired
by EUF abstraction, SA implicitly creates an abstraction using the terms present
in the syntax of the problem yielding an abstract domain whose size is completely
independent of the bit widths of the registers or the sequential depth [43] of
the design. SA offers high granularity and captures all equality relations among
the terms present in the syntax of the problem, while also interpreting data
operations. Any spurious behavior is eliminated by adding new terms that were
missing in the original problem. We show how to efficiently combine IC3 with
SA (IC3+SA), and extend IC3+SA with data abstraction using uninterpreted
functions (UF). IC3+SA with data abstraction allows for abstract reasoning
that is completely independent of the design’s bit widths and offers scalability
irrespective of the problem size or complexity of operations.
Our main contributions are as follows:
– We present syntax-guided abstraction to implicitly capture the most relevant

details from the syntax of the system with negligible computation cost.
– We present an efficient syntax-guided cube generalization procedure for word-

level IC3 that is quantifier-free, doesn’t require any solver calls, and does not
perform any implicit or explicit unrolling of the transition relation.

– We suggest a fully incremental procedure to refine SA and eliminate any
spurious behavior in the abstract domain.

– We show how IC3+SA can be easily extended with data abstraction using
UF for complete and scalable model checking on control-intensive problems.

The paper is organized as follows: Sec. 2 presents the relevant background to
describe the detailed SA approach in Sec. 3. Sec. 4 shows how SA is integrated
within the IC3 framework, and the correctness of this method is proved in Sec. 5.
Sec. 6 covers implementation details and presents an experimental evaluation on
a diverse set of RTL benchmarks. The paper concludes with a brief survey of
related work in Sec. 7, and a discussion of future directions in Sec. 8.

2 Background

2.1 Notation

Our setting is standard first-order logic with the notions of sort, universe, sig-
nature, and structure defined in the usual way [7]. A term is a constant symbol,
or an n-ary function symbol applied to n terms. An atom is >, ⊥ or an n-ary
predicate symbol applied to n terms. A literal is an atom or its negation, a cube
is a conjunction of literals, and a clause is a negation of a cube, i.e., a disjunc-
tion of literals. A quantifier-free formula is a literal or the application of logical
connectives to formulas.

We will refer to all terms with a non-boolean range as words, and refer to
words with 0-arity as ground words. A partition assignment for a formula ϕ is
defined as a boolean assignment to each predicate in ϕ, and a set of partitions
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(one for each sort) dividing the words in ϕ into equivalence classes. An interpre-
tation I assigns a meaning to terms by means of a uniquely determined (total)
mapping (J KI) of such terms into the universe of its structure. A model of a for-
mula ϕ for an interpretation I is a structure that satisfies ϕ (i.e. JϕKI = >). For
example, the interpretation for the theory of free sort and function symbols (call
it IP ) maps terms into the universe of partition assignments. The interpretation
for the theory of bitvectors (call it IB) maps terms into a universe composed of
bitvector assignments.

Given a transition system, we will use primes to represent a variable after
a single transition step. Given a set of variables X, X ′ is the set obtained by
replacing each variable in X with its primed version. We will use ϕ (resp. ϕ′) as
a shorthand for a formula ϕ(X) (resp. ϕ(X ′)).

2.2 Model Checking

A model checking problem P can be described by a 4-tuple 〈X, I, T, P 〉, where
X denotes the set of present state variables, I(X) is a formula representing the
initial states, T (X, X ′) is a formula for the transition relation, and P (X) is a
formula for a given safety property. Given P, the model checking problem can
be stated as follows: either prove that P (X) holds for any sequence of executions
starting from a state in I(X), or disprove P (X) by producing a counterexample.

We assume that T is expressed as a conjunction of equalities that express
next-state variables as functions of present-state variables. Input variables are
conveniently modeled as state variables whose corresponding next states are
completely unconstrained. Our focus is on verifying Verilog RTL designs which
we encode as finite transition systems that are naturally expressed in the QF BV

theory of SMT-LIB.

3 Syntax-guided Abstraction

Predicate abstraction (PA) [28] encodes the abstract state space using a set of
predicates whose boolean assignments encode the abstract states. In contrast,
syntax-guided abstraction (SA) encodes the abstract state space using the set
of terms present in the word-level syntax of the problem. Abstract states in SA
correspond to partition assignments that capture the equality relations among
the problem’s terms. The relevant parts of the abstract transition relation in both
implicit PA [20,21] and SA are constructed incrementally, as needed, during the
reachability search using bitvector queries. We will use P to denote the original
concrete problem and P̂ to denote its syntactically-abstracted version. Models
in P use the interpretation IB , i.e. exact bitvector assignments, whereas models
in P̂ use the IP interpretation, i.e. partition assignments. Effectively, SA hides
away irrelevant bit-level details and is able to infer higher-level equality relations
among the words in the problem description.
Example 1: Let P = 〈{u, v}, (u = 1) ∧ (v = 1), (u′ = ite(u < v, u + v, v +
1)) ∧ (v′ = v + 1), ((u + v) 6= 1)〉, where u, v are k-bit wide. P has 1 predicate
(u < v) and 5 words (1, u, v, u+ v, v+ 1). Consider a concrete state s := (u, v) =
(1, 2). Its corresponding abstract state is obtained by evaluating the problem’s
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predicates and terms using the concrete state assignment and creating a partition
assignment based on these evaluations. In this example, the abstract state is
easily seen to be ŝ := (u < v) ∧ { 1, u | v | u+ v, v + 1 }1.

The biggest advantage of SA is that the abstract state-space size is completely
independent of the bit-width of variables while still accounting for all relations
among terms in the original problem. Given P with, say, m total state bits, the
concrete system has 2m states. On the other hand, the total number of abstract
states is bounded by 2p × Bn, where p is the number of predicates in P̂, n is
the number of words in P̂, and Bn is the nth Bell number [46] (the number of
unique partitions on n terms). For example, let k = 16 in Example 1. The size of
the concrete state space is 22×16 i.e. ∼ 4.2 billion, while the number of abstract
states is 21 ×B5 = 104, completely independent of k.

Given a formula ϕ, we use concrete theory reasoning (i.e. QF BV) for abstract
SMT solving (similar to [20,21]) with the modification that the solution (i.e.
model) of ϕ in the abstract domain is expressed as a partition assignment on
terms in ϕ, i.e. for a partition assignment ŝ, ŝ |= ϕ iff there exists a bitvector
assignment s such that s |= ϕ and ŝ = α(ϕ, s), where α is the abstraction
function that converts a bitvector assignment s to a partition assignment on
terms in ϕ. We perform a simple evaluation of each term in the formula to
construct a partition assignment based on the bitvector assignment.
Example 2: Consider P from Example 1. Let k = 2. Consider the formula ϕ =
P ∧ T ∧ ¬P ′ and a satisfying concrete solution s := (u, v, u′, v′) = (0, 2, 2, 3).
Terms in ϕ evaluate as (u < v, u+v, v+1, u′+v′) = (>, 2, 3, 1) under s, resulting
in the abstract solution to be ŝ := (u < v)∧{ u | 1, u′+v′ | v, u+v, u′ | v+1, v′ }.

We can always construct a unique abstract solution ŝ given a formula ϕ
and its concrete solution s. Modern SMT solvers (e.g. [24,23]) have support to
give the bitvector assignment for each term in the formula without any extra
cost. Words with the same assigned value go in the same equivalence class of a
partition, while different assignments mean different classes.

An abstract solution is complete if it contains all the terms in P. The ab-
stract state space is defined by the universe of complete abstract solutions. An
abstract solution can be projected on any subset of symbols (a projection set)
by co-factoring the solution to eliminate all terms with any symbol outside
the projection set, i.e. by simply dropping terms from the partition assignment
that contain symbol(s) outside the projection set. An abstract solution can be
converted to an equivalent cube by adding all constraints needed to cover the
solution.
Example 3: Consider ŝ from Example 2. ŝ can be projected on the projection set
σ = {+, 1, u′, v′} to get a partial abstract solution representing the destination
states as ŝ|σ := { 1, u′ + v′ | u′ | v′ }. The corresponding cube representation is
cube(ŝ|σ) = ((u′ + v′) = 1) ∧ (u′ 6= 1) ∧ (v′ 6= 1) ∧ (u′ 6= v′).

1 In this notation, vertical bars separate the equivalence classes of the partition. Thus
{a, b|c} should be interpreted to mean {{a, b}, {c}} in the standard notation for
partitions.
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The SA abstract state space induces a partition on the concrete state space
such that each concrete state is mapped to a single abstract state. An abstract
state, thus, corresponds to a (possibly empty) set of concrete states causing the
abstract transition relation to be non-deterministic. This abstraction is sound
but may lead to spurious behavior.
Example 4: Consider the following abstract path from P in Example 2:

ŝ1 := ¬(u < v) ∧ { 1, u, v | u + v, v + 1 }
ŝ2 := ¬(u < v) ∧ { 1 | u, v | u + v | v + 1 }
ŝ3 := ¬(u < v) ∧ { 1, v + 1 | u, v, u + v }

2,2
3,3

0,0
1,1

Concrete state (u,v)Abstract state Abstract transition Concrete transition

ŝ1 has a concrete transition to ŝ2, ŝ2 can concretely transition to ŝ3, though
there isn’t a continuous 2-step concrete path from ŝ1 to ŝ3 via ŝ2. SA can be
refined by adding new terms. For example, we can add the constant term 2 (or
3) to eliminate the spurious behavior of Example 4.

To better understand how SA compares to PA, consider P from Example 2.
There are 16 concrete states in P. The four predicates in P, i.e. p1: (u = 1),
p2: (v = 1), p3: ((u + v) = 1) and p4: (u < v) are a natural choice as initial
predicates for PA. Table 1 compares the abstract domain for SA and PA against
the concrete state space. PA with p1−4 as predicates partitions the concrete states
into 9 feasible abstract states. SA on the other hand offers higher expressiveness
and partitions the concrete states into 13 feasible abstract states.

Table 1: Mapping of abstract states on concrete states for SA and PA

Index SA: partition assignment on Concrete PA:
{u < v, 1, u, v, u + v, v + 1} states: (u, v) p1p2p3p4

1 ¬(u < v)∧ { 1, v + 1 | u, v, u + v } (0, 0) 0000
2 ¬(u < v)∧ { 1, v + 1 | u, u + v | v } (2, 0), (3, 0)
3 ¬(u < v)∧ { 1 | u, v | u + v | v + 1 } (2, 2), (3, 3)

4 (u < v)∧ { 1 | u | v, u + v | v + 1 } (0, 2) 0001
5 (u < v)∧ { 1 | u, v + 1 | v, u + v } (0, 3)

6 ¬(u < v)∧ { 1, u + v | u, v + 1 | v } (3, 2) 0010

7 (u < v)∧ { 1, u + v | u | v | v + 1 } (2, 3) 0011

8 ¬(u < v)∧ { 1, v | u, v + 1 | u + v } (2, 1) 0100
9 ¬(u < v)∧ { 1, v | u | u + v | v + 1 } (3, 1)

10 (u < v)∧ { 1, v, u + v | u | v + 1 } (0, 1) 0111

11 (u < v)∧ { 1, u | v | u + v, v + 1 } (1, 2), (1, 3) 1001

12 ¬(u < v)∧ { 1, u, u + v, v + 1 | v } (1, 0) 1010

13 ¬(u < v)∧ { 1, u, v | u + v, v + 1 } (1, 1) 1100

others: (21 ×B5 − 13 = 91) infeasible others: (24 − 9 = 7)

Syntax-guided abstraction has the following advantages over PA:
– Unlike predicate abstraction or its variants [28,6], SA is implicitly defined

by the original syntax and does not require a user-specified set of initial
predicates or solver queries to generate the abstract state space.

– By construction, SA accounts for all equality relations among terms in the
syntax and offers higher granularity and expressiveness than implicit predi-
cate abstraction [20,21], resulting in less spurious behavior.
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– SA is refined by adding new terms that are absent in the original problem
syntax, while PA relies on adding new predicates for refinement. Further-
more, equality propagation, which is at the heart of SA, allows all equality
relations involving a newly-introduced term to be automatically detected; in
PA such relations are discovered one by one in multiple refinement iterations.

SA+UF: SA uses bit-precise QF BV queries and may not scale for large problems
with complex operations. Since SA requires only a partition assignment on terms
and not exact bitvector assignments, it aligns perfectly with data abstraction
where data operations (like arithmetic, shift, etc.) are treated as uninterpreted
functions [15,5,4,40]. SA+UF is most appropriate for control-centric properties
where correctness is largely independent of data state. IC3 with SA+UF ex-
tends [40] and allows for efficient reasoning using QF UF queries regardless of the
bit-width of variables or complexity of data operations.
Example 5: Consider P from Example 1. Using SA+UF, the abstract problem
becomes P̄ = 〈X̄, Ī, T̄ , P̄ 〉:

X̄ = { ū, v̄ } Ī = (ū = 1̄) ∧ (v̄ = 1̄) P̄ = (ADD(ū, v̄) 6= 1̄)
T̄ = (ū′ = ite(LT (ū, v̄), ADD(ū, v̄), ADD(v̄, 1̄)) ∧ (v̄′ = ADD(v̄, 1̄))

SA+UF uses uninterpreted sorts instead of bitvectors (indicated by¯), and con-
verts data operations (e.g. <, +) to UFs (e.g. LT , ADD) and ground terms to
UFs with 0-arity.

4 IC3 with Syntax-guided Abstraction (IC3+SA)

IC3+SA uses SMT solving to raise reasoning from propositional to FOL, sim-
ilar in spirit to [19,34,20,40,21]. The IC3+SA algorithm performs the core IC3
procedure in the syntactically-abstracted state space and tightens the abstrac-
tion using a typical CEGAR loop [37,22]. There are 2 key differences between
IC3+SA and bit-level IC3.
– How to generalize a satisfiable query from a particular solver solution?
– How to refine spurious counterexamples?

Most other concepts in IC3 remain identical to the bit level and can be equiv-
alently applied in IC3+SA using word-level clauses and SMT solvers (as elabo-
rated in [19,11,40]).

4.1 Generalization of a Satisfiable Query

Consider a 1-step reachability query from frame m to a destination cube c (i.e.
SAT ? [Fm ∧ T ∧ c′]). If the query is satisfiable, it is essential for performance
to generalize the particular solution returned by the solver into a generalized
cube cm (as indicated in [25,13,11]). For the propositional case, the authors of
[25] suggest ternary simulation to generalize the particular solution into a cube.
This generalization (as well as cube generalization suggested in the original IC3
algorithm [13]) ensures strict continuity.

Definition 1. (Strict Continuity) Given a destination cube c, every state in the
generalized cube cm should have a transition under T to the destination cube c,
i.e. ∀s SAT ? [s ∧ T ∧ c′] is satisfiable, where {s ∈ cm | s is a state }.
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Strict continuity is not necessary for IC3, though it is sufficient to guarantee
“relaxed” continuity.

Definition 2. (Continuity) Given a sequence of cubes C = 〈cm, . . . , cn〉 with
cn = ¬P , there exists a path π = 〈sm, . . . , sn〉 such that {si ∈ ci | si is a state }
for all i ∈ {m, . . . , n}.

For correctness, the necessary condition for any cube generalization proce-
dure is to ensure continuity (Def. 2), i.e. there should exist a path from the
generalized cube cm to ¬P . After all, any cube with a continuous path to a bad
state (i.e. a state satisfying ¬P ) needs to be checked for reachability from the
initial states.

It is unclear how to extend ternary simulation to word-level semantics, since
ternary simulation inherently relies on modeling the system as a boolean cir-
cuit. Instead, we use a syntax-guided generalization technique that exploits the
word-level structure of the problem to cheaply generalize a particular abstract
solution. The procedure exploits structural cone-of-influence (COI) and model-
based justification to identify relevant portions that are sufficient to justify the
particular solution (similar to justification in test pattern generation [47]), and
creates a projection set with relevant symbols. The particular solution is pro-
jected on these relevant symbols to get the generalized cube.

Algorithm 1 Syntax-guided Generalization

1. procedure Generalize(ŝ, c′). ŝ is a particular abstract solution, c′ is a destination cube
2. σ ← σrefine . initialize projection set (initially σrefine = ∅)
3. JustifyCOI(ŝ, c′, σ) . build projection set σ
4. σ ← σ −X′ . get rid of next state symbols
5. ŝ|σ ← Project(ŝ, σ) . project ŝ on σ
6. return cube(ŝ|σ) . convert to a cube and return

7. procedure JustifyCOI(ŝ, ϕ, σ) . ϕ is a FOL expression, σ is passed by reference
8. if ϕ is a conditional operation then . if ϕ is an if-then-else expression
9. 〈cond, v>, v⊥〉 ← BreakCondition(ϕ) . get condition and arguments
10. JustifyCOI(ŝ, cond, σ)
11. val ← Evaluate(cond, ŝ) . evaluate cond under ŝ
12. JustifyCOI(ŝ, (val = >) ? v> : v⊥, σ) . recurse only on the relevant branch
13. else if ϕ is a logical operation then
14. val ← Evaluate(ϕ, ŝ) . evaluate ϕ under ŝ
15. if IsControlling(val, ϕ) then . if assigned a controlling value (⊥ for ∧, > for ∨)
16. JustifyCOI(ŝ, GetControlling(ϕ, ŝ), σ) . recurse only on controlling arg.
17. else
18. for each a ∈ Argument(ϕ) do
19. JustifyCOI(ŝ, a, σ)

20. else
21. for each a ∈ Argument(ϕ) do
22. JustifyCOI(ŝ, a, σ)

23. if ϕ is a next state variable then
24. JustifyCOI(ŝ, GetRelation(ϕ), σ) . get the next state relation for ϕ from T

25. Add symbol(ϕ) to σ . add symbol of ϕ to the projection set

Alg. 1 presents the syntax-guided generalization procedure using COI with
model-based justification. Given the particular abstract solution ŝ and the des-
tination cube c′, the procedure traverses the concrete structural COI of c′ and
collects symbols encountered in the process (line 3, 7-25). The key idea is that
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during the traversal we can syntactically prune away portions that are not im-
portant under the given particular solution (lines 12,16) and only visit portions
that justify leading to the destination. Once the relevant symbols are collected,
the algorithm projects ŝ on these symbols to get the generalized cube (lines 5-6).

Alg. 1 guarantees abstract continuity (Def. 2), with the generalized cube
always having an abstract path to ¬P in P̂. The algorithm however does not
guarantee strict continuity (Def. 1), as evident from the following example:
Example 6: Let P = 〈{u, v, w}, (u = 1) ∧ (v = 1) ∧ (w = 1), (u′ = ite((u <
v)∨ (v < w), u+ v, v+ 1))∧ (v′ = v+ 1)∧ (w′ = w+ 1), ((u+ v) 6= 1))〉, with u,
v, w being 3-bit wide. Consider the following query and its particular solution:

F1 = P ϕ = F1 ∧ T ∧ ¬P ′
Q1 := SAT ? [ϕ] gives SAT with solution s
s = (u, v, w, u′, v′, w′) = (0, 4, 2, 4, 5, 3) ŝ = α(ϕ, s)
ŝ = (u < v) ∧ ¬(v < w) ∧ { u | 1, u′ + v′ | w | w + 1 | v, u+ v, u′ | v + 1, v′ }

Generalize(ŝ, ¬P ′) creates the generalized cube c1 as follows:

σ = { +, u′, v′, 1, <, u, v } − { u′, v′, w′ }
= { +, <, u, v, 1 }

c1 = cube(ŝ|σ) = (u < v) ∧ { u | 1 | v, u+ v | v + 1 }
On careful analysis one can see that not all abstract states in c1 have an abstract
transition to the destination (¬P ′). For example, consider the abstract state
â1 = (u < v) ∧ ¬(v < w) ∧ { u | 1, w | v, u+ v, w + 1 | v + 1 }. â1 is an abstract
state in the cube c1, but it does not have a transition under T to any destination
state, i.e. SAT ? [cube(â1) ∧ T ∧ ¬P ′] is UNSAT.

We believe non-determinism in the word-level abstract domain is the reason
why Alg. 1 does not follow strict continuity. Even though Def. 1 is violated, Alg. 1
still guarantees continuity (Def. 2) in the abstract domain. This is because the
Generalize algorithm ensures that all terms in P̂ that are required to lead to
the destination c′ under the particular abstract solution ŝ are retained in the
generalized cube cube(ŝ|σ) as is from ŝ. As a result, even though cube(ŝ|σ) has
abstract states that do not have an abstract transition to the destination c′, this
cannot result in an abstract path discontinuity while still limiting to terms in
P̂. The Generalize procedure acts as a quick sweeper that removes irrelevant
terms that will never get involved with any query that satisfies cube(ŝ|σ)∧T ∧c′,
and encodes the sufficient information using the relevant symbols in cube(ŝ|σ).
The proposed generalization procedure has the following advantages:
– In contrast to solver-based methods suggested in [18,34,11], syntax-based

generalization is inexpensive since it does not required any solver query.
– Since the generalization is driven from the syntactic cone of the destination,

the procedure only captures the relevant information leading to a bad state.
– The technique guarantees continuity with no need for lifting refinement [11].
– Unlike [40,39], the technique does not use weakest preconditions (WP) for

generalization, which can be regarded as implicitly unrolling the transition
relation. WP-based techniques generate new terms through function compo-
sitions, which complicates the abstract state space and can often cascade to
cause incompleteness and poor SMT solving.
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Syntax-based generalization offers an inexpensive and effective procedure to ex-
pand a single solver solution to a set of solutions for word-level IC3. An identical
generalization procedure can be used for SA+UF and possibly even for PA.

4.2 Refinement

Running IC3 in the abstract domain either generates an inductive invariant that
proves the property to be true, or produces an abstract counterexample evidence
C. An abstract counterexample C of length n+ 1 is represented by a sequence of
n+ 1 abstract cubes 〈c0, c1, c2, . . . , cn〉, where cn = ¬P .

We concretize C by restoring the interpretation to IB , i.e. exact bitvector
assignments. C can be spurious when the terms in the original problem are
insufficient to express the bit-precise nature of the concrete problem.

One way to identify spurious behavior in C is by checking the satisfiabil-
ity of a single concrete path query along C with explicit unrolling, i.e. SAT ?

[I ∧
( n−1∧
i=0

cii ∧ T i
)
∧ cnn] (where ϕi denotes the formula ϕ at ith transition step)

using QF BV SMT solving. Checking satisfiability of such a query with multiple
copies of T is not scalable in practice as the length of C increases. We instead
perform incremental refinement along the counterexample (Alg. 2) which uses
1-step queries to perform forward image computation [29] along C. We formulate
at most n queries Qi := SAT ? [pi−1 ∧ ci−1 ∧ T ∧ c′i] (1 ≤ i ≤ n) such that
p0 = I, and pi equals the symbolic post image [29,42] of pi−1 ∧ ci−1 under the
solution of the query Qi. To compute pi after a satisfiable query Qi (say with
solution s), we use fresh symbolic constants to replace unconstrained variables
at that step and syntactically evaluate T under s to get the symbolic post image
of pi−1 ∧ ci−1 for the next step (line 6). This generates new terms and results
in an implicit unrolling of T , which in practice is simpler compared to explicit
unrolling. We check for the satisfiability of Qi in increasing order (from i = 1 to
n) and stop as soon as a query is found unsatisfiable (lines 3-14). From the un-
satisfiable query, we extract a minimal unsatisfiable subset [45,41] (MUS) m and
get rid of any symbolic constant in m using substitution or rarely instantiation
using last solver assigned value if substitution is not possible (lines 8-9). Since

Algorithm 2 Refinement of SA

1. procedure Refine(Ĉ)
2. p0 ← I
3. for i = 1 to n do
4. ψi ← pi−1 ∧ ci−1 ∧ T ∧ c′i
5. if SAT ? [ψi]: solution s then
6. pi ← PostImage(pi−1 ∧ ci−1, s) . compute image(pi−1 ∧ ci−1) under s
7. else . i.e. C is spurious
8. m ← MUS(ψi) . find MUS for the UNSAT query
9. m ← Substitute(m) . eliminate symbolic constants
10. Φ ← ¬m
11. T ← T ∧ Φ . conjoin axiom to T̂
12. σnew ← symbols(NewTerms(Φ)) . find symbols in new terms
13. σrefine ← σrefine ∪ σnew . add permanent symbols
14. return ∅
15. return C . i.e. C is a true counterexample
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the unsatisfiability is due to a concrete path infeasiblity, m necessarily contains
constraints from the forward image computation that include new terms gener-
ated from substitution. These new terms are important to eliminate the spurious
counterexample. We add these newly discovered terms to the abstract domain
by deriving a refinement (path) axiom by negating m (line 10). We refine the
abstract problem P̂ by conjoining the refinement axiom to the transition relation
T (line 11).

New terms created are crucial to eliminate spurious counterexamples. They
were absent in the original problem and hence the abstract domain wasn’t ex-
pressive enough to capture infeasibilities involving them. Adding the refinement
axiom with these new terms automatically augments the abstract problem and
makes them part of future iterations of IC3+SA. We add the symbols in the new
terms as permanent members of all projection sets computed using Alg. 1 so as to
ensure that future iterations of Generalize doesn’t ambitiously generalize them
away (lines 12-13). This is essential since these new terms are not part of the
original problem syntax but are required to eliminate spurious counterexamples.

If all queries Qi are satisfiable, it means that C is indeed including true coun-
terexample(s) that disprove the property. One instance of a true counterexample
can be easily retrieved by keeping tracking of solutions to the queries Qi.

After learning a refinement axiom, IC3+SA incrementally resumes the ab-
stract IC3 procedure from the last top frame. Since the abstraction refinement
procedure is completely monotonic with each iteration making the abstract do-
main more precise and finer by adding new terms, we can reuse all of the reach-
ability information and abstract clauses from previous iterations.
The refinement procedure provides the following advantages:
– All concrete queries involve a single instance of the transition relation and

avoids explicit unrolling.
– There is no path explosion since the refinement is constrained to the paths

along the abstract counterexample.
– Symbolic constants for unconstrained variables allow avoiding enumerative

simulation on exact variable assignments returned by the solver.
– The procedure is completely incremental and allows reuse of all previous

abstract clause learning.
SA+UF: Data abstraction using UF can introduce additional spurious behavior
with inconsistencies resulting from the usage of UF instead of concrete data
operations. Given C = 〈c0, . . . , cn〉, we can check for such inconsistencies using
at most n concrete queries Qi := SAT ? [ci−1 ∧ T ∧ c′i] (0 < i ≤ n) in any
order (similar to [40]). In the case any query returns UNSAT, we can learn a
refinement (data) axiom to constrain T . Data axioms will never add any new
term and therefore will never increase the size of the abstract state space. They
eliminate spurious abstract states/transitions that got introduced due to data
abstraction, while path axioms add more granularity.
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5 Proof of Correctness

Inspired from [13,25,20], we list the properties on frames preserved by IC3+SA.

(p1) F0 = I (p2) Fi → P
(p3) The clauses Fi+1 is a subset of Fi for i > 0 (p4) Fi → Fi+1

(p5) Fi+1 is an over-approximation of the image of Fi
(p1-5) are true and preserved by the IC3 algorithm [13,25]. After a refinement
iteration, all frame clauses remain valid since the refinement procedure (Alg. 2)
is monotonic with respect to the terms describing the abstract state space. After
each refinement iteration Tnew |= T , implying Fnew |= F , preserving (p1-5).

Lemma 1. (Correctness) If IC3+SA(P) returns an invariant Φ, then Φ is in-
ductive and Φ→ P under P.

Proof. From the IC3 algorithm, let Fconv be the frame that reached the fixed
point (i.e. Fconv = Fconv+1). Let Φ = Fconv. Due to (p5) and (p2), Φ is inductive
and Φ→ P .

Lemma 2. (Correctness) If IC3+SA(P) returns a counterexample C, then C
has a path under T starting from I and violating P .

Proof. Let C = 〈c0, . . . , cn〉. By construction, cn = ¬P . From Sec. 4.1, C is
abstractly continuous. The refinement procedure (Alg. 2) will return C iff (I ∧( n−1∧
i=0

cii ∧ T i
)
∧ cnn) is satisfiable, implying C is concretely continuous and a true

counterexample.

Lemma 3. (Termination) IC3+SA(P) will eventually terminate.

Proof. For a given abstract problem P̂, the IC3 algorithm will eventually ter-
minate since all abstract queries are decidable, the number of abstract states is
finite, and the maximum number of frames is bounded by the number of abstract
states (due to (p2-5)). Each refinement iteration introduces new term(s) making
the abstract state space more precise with respect to the concrete state space.
The number of new terms that can be added is limited by the sequential depth
of the concrete problem P (which is finite), making the number of refinement
iterations finite. Hence, IC3+SA will eventually terminate.

Theorem 1. IC3+SA(P) is sound and complete.

Proof. From Lemmas 1, 2 and 3, IC3+SA is sound and complete.

6 Implementation and Evaluation

We implemented IC3+SA in C++ in the Averroes system [40]. We made a
complete rewrite to the frontend and backend of Averroes, with a primary focus
on model checking of Verilog RTL. The new version [26] (Averroes 2, or avr in
short) uses yosys [51] as the preprocessor frontend to allow direct translation
of Verilog RTL and SystemVerilog assertions (SVA) into a word-level model
checking problem. yosys parses the Verilog RTL, removes any hierarchy, and
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exports the flat word-level design to avr in the .ilang format2. avr uses Yices
2 [24] (version 2.6) for solving abstract SMT queries and Z3 [23] (version 2.5)
for concrete SMT queries.
Setup: We analyzed a total of 535 invariant checking problems (Verilog RTL
files with SVA) that can be classified as follows:
– opensource: a set of 141 problems collected from benchmark suites accom-

panying tools vcegar [36] (#23), v2c [44] (#32) and verilog2smv [35] (#86).
Problems include cores from picoJava, USB 1.1, CRC generation, Huffman
coding, mutual exclusion algorithms, simple microprocessor, etc.

– industry : a set of 370 problems collected from industrial collaborators3. Of
these, 124 were categorized as easy (code sizes between 155 and 761 lines; #
of flip-flops between 514 and 931), and 235 as challenging (code sizes between
109 and 22065 lines; # of flip-flops between 6 and 7249). The remaining 11
problems involved sequential equivalence checking on a multiplier design
before and after clock gating optimization.

– crafted : a set of 24 simple problems synthetically created for calibration
(includes both control- and data-centric problems).

We compared the following techniques:
From ABC version 1.01 [8]:

– pdr : pdr is one of the best implementations of the bit-level IC3 algorithm.
– dprove: dprove employs a preprocessing stage using a portfolio of techniques

(BMC [9], retiming, fraiging, simulation, interpolation, etc.) with carefully-
tuned heuristics to quickly solve/reduce the problem. If the problem remains
unsolved, dprove invokes pdr on the reduced problem.

– pdr-nct : the -nct flags configure pdr to use better generalization [30] and
enable localization abstraction [33].
From nuXmv version 1.1.1 [17]:

– nuxmv-ic3ia: a word-level IC3 implementation in nuXmv using implicit pred-
icate abstraction [20].
From Averroes version 2.0 [26]:

– avr-ic3sa: IC3+SA i.e. IC3 with syntax-guided abstraction.
– avr-ic3sa-uf : IC3+SA+UF i.e. IC3+SA with data abstraction using UF.

For comparison against bit-level IC3, we chose implementations from ABC
since these have shown exceptional performance in HWMCC [10]. We also consid-
ered including other abstraction based IC3 techniques like L-IC3 [48], UFAR [31]
and PDR-WLA [32]. However, PDR-WLA was not able to process the designs
due to input format issues, while L-IC3 and UFAR do not have, to the best of
our knowledge, a publicly available implementation. Techniques like [34,11,38,12]
do not have implementations that can handle hardware designs.

We used yosys [51] as the common frontend. The Verilog designs and SVA
were parsed by yosys, which removes any hierarchy and produces flat RTL Ver-
ilog. For nuxmv-ic3ia and avr-*, the flat word-level format is syntactically ex-

2 .ilang is a format for textual representation of the yosys’s design.
3 We obtained these designs under non-disclosure agreements and, unfortunately, can-

not make them publicly available.
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ported by yosys into the equivalent word-level input formats used by these tools.
Since ABC based tools cannot exploit word-level information and operate at the
bit level, we used yosys to synthesize the flat RTL to an And-Inverter Graph
(AIG) and exported to ABC in .blif format. All experiments were conducted on
a cluster of 163 2.5 GHz Intel Xeon E5-2680v3 processors (cores) running 64-bit
Linux. Each verification run was given exclusive access to a single core, with a
memory limit of 16 GB and a time limit of 5 hours.

6.1 Results

Even though experimental evaluations are necessarily biased by the suite of
problems used, we nonetheless believe that useful insights can still be gained
from a careful analysis of the results. The raw data along with detailed bench-
mark statistics and plots along with opensource and crafted benchmarks can
be retrieved from a publicly-accessible repository [1]. The three tool packages
used ABC, nuXmv and Averroes 2 are publicly available from [2], [3] and [26]
respectively.

The reader is referred to [27] for a summary on the performance of avr-ic3sa-
uf, which demonstrates the effectiveness of IC3+SA with data abstraction. Here,
we provide an in-depth analysis compared to avr-ic3sa to better understand the
strengths and weaknesses of SA and SA+UF.

Table 2: Number of problems solved. TO: timed out, MO: out of memory, Unique:
solved uniquely (not solved by others), IN: industry, OS: opensource, CR: crafted

Tool Solved (535) TO MO Error Unique IN (370) OS (141) CR (24)

pdr 466 69 0 0 1 308 137 21

dprove 477 57 0 1 3 315 138 24

pdr-nct 466 68 1 0 1 308 137 21

nuxmv-ic3ia 389 92 46 8 0 232 133 24

avr-ic3sa 461 69 5 0 0 302 135 24

avr-ic3sa-uf 526 0 9 0 52 368 134 24
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Fig. 1: Survival plot comparing the number of problems solved versus time

Aggregate results: Table 2 and Fig. 1 provide an overview on the performance
of each tool. Overall, techniques from ABC, nuXmv and Averroes 2 solved 480,
389 and 527 problems respectively in total. IC3+SA with data abstraction (avr-
ic3sa-uf ) performed the best, particularly in the industry category. The perfor-
mance of avr-ic3sa is competitive to ABC tools even though ABC tools have a
highly tuned and efficient implementation developed over years of innovation.
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Fig. 2: avr-ic3sa runtime comparisons. avr-ic3sa’s times are better (resp. worse)
above (resp. below) the diagonal.
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Fig. 3: Number of solver calls (SAT solver calls for pdr, SMT solver calls for others)
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Fig. 4: IC3 statistics
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Fig. 5: Number of refinements

avr-ic3sa is always on x-axis. All plots exclude runs in which a tool reported an error
or ran out of memory, and all runtime refer to CPU time in seconds.
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Runtime comparison: Fig. 2 compares avr-ic3sa’s runtime against other tools.
ABC tools marginally dominated avr-ic3sa, though there is a significant number
where avr-ic3sa performed better. Bit-level techniques enjoy the advancements
in hardware synthesis that can significantly reduce the complexity in the synthe-
sized design, though they loose this advantage for larger and complex designs.
Compared to nuxmv-ic3ia, avr-ic3sa shows good benefits and demonstrates the
benefits of SA over implicit predicate abstraction [20]. Data abstraction helps
avr-ic3sa-uf to outperform avr-ic3sa in the industry category (where the prop-
erty is control intensive), while avr-ic3sa is better in the data-dependent open-
source category.
Solver calls: Fig. 3 shows the comparison of the total number of solver calls.
Bit-level IC3 (represented by pdr) makes orders-of-magnitude more SAT solver
calls compared to the number of SMT calls made by word-level tools. Even with
many more solver calls, bit-level techniques are competitive to word-level tech-
niques w.r.t. runtime (Fig. 2), indicating the advancement gap between SAT ver-
sus SMT solving. Structural cube generalization and syntax-guided abstraction
allows avr-ic3sa to require fewer solver calls than nuxmv-ic3ia. The large num-
ber of solver calls made by avr-ic3sa-uf compared to avr-ic3sa in the opensource
category reflects the importance of correct abstraction procedure and suggests
possible benefits from a hybrid abstraction on a subset of data operations that
can tune automatically based on the nature of the property.
Clause learning: Fig. 4.a-b compares the number of frame clauses derived by
avr-ic3sa versus pdr and nuxmv-ic3ia. avr-ic3sa requires orders-of-magnitude
fewer clauses compared to pdr, showing the benefits of word-level clause learning
as against weak propositional learning. Fewer frame clauses derived by avr-ic3sa
as compared to nuxmv-ic3ia reflects that SA is better in capturing the important
details of the problem compared to implicit predicate abstraction.
Number of refinements: Fig. 5 shows the comparison of the number of refine-
ments required for the techniques that use an abstraction refinement procedure
(pdr-nct, nuxmv-ic3sa, avr-* ). The number of refinements required by avr-ic3sa
is the least compared to all others, demonstrating the effectiveness of syntax-
guided abstraction. As expected, avr-ic3sa-uf has to undergo several refinement
iterations for the data-dependent opensource category.
Invariant size: Model checking on Verilog RTL instead of post-synthesis netlist
has the additional benefit of producing human-readable word-level inductive
invariants. avr-ic3sa produces a concise and informative word-level inductive
invariant with much fewer clauses than one produced by pdr (Fig. 4.c).

7 Related work

Several approaches from different domains have been suggested to extend the
bit-level IC3 procedure. From the hardware domain, the authors of [48] suggest
lazy abstraction using “visible variables”. The authors of [31] use UF to abstract
away expensive data operations, followed by bit-blasting. The authors of [32]
use unconstrained new primary inputs to abstract away parts of the system.
The authors of [33] suggest using localization abstraction to cut away irrelevant
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logic. All these approaches [48,31,32,33] use bit-level IC3 as the core engine and
suffer with the same scalability issues as with bit-level IC3.

Certain approaches propose performing word-level IC3 using SMT solvers.
The authors in [50] generalize IC3 to the theory of bitvectors by using polytopes
and interval simulation. The authors of [40,39] suggest performing word-level
IC3 with data abstraction using uninterpreted functions.

Beyond hardware, different approaches propose to lift the IC3 procedure to
richer logics and infinite state systems [19,34,11,38,12]. Our approach differ sig-
nificantly from these techniques as IC3+SA does not rely on theory specific
under-approximation of the pre-image, quantifier elimination, weakest precon-
ditions or interpolation. The authors of [20,21] suggest using implicit predicate
abstraction that performs a word-level IC3 procedure (IC3IA), and refines the
abstraction by adding new predicates. Our approach is partly similar to IC3IA,
but with better granularity and expressiveness resulting in fewer occurrences of
spurious behavior. We also suggest an inexpensive syntax-driven cube general-
ization procedure for word-level IC3, along with a fully incremental refinement
procedure without using multiple copies of the transition relation. Unlike CTI-
GAR [11], our cube generalization technique does not require any lifting solver
query to eliminate non-essential symbols and still guarantees continuity.

Data abstraction using UF has been applied for both hardware [15,4,40,39]
and software [5]. IC3+SA allows for an easy and scalable extension to data
abstraction, and unlike [40,39], it does not face non-termination issues.

8 Conclusions and Future Work

Syntax-guided abstraction suggests an alternative way to raise bit-level IC3 pro-
cedure to the word level. SA is implicitly defined by the terms in the syntax
of the problem and offers high granularity. We demonstrate how to integrate
IC3 with SA efficiently, and propose a word-level structural cube generalization
procedure without any need for additional solver queries or unrolling. We show
the correctness of the technique and evaluate the effectiveness of the approach
on a suite of open-source and industrial hardware problems.

Future work include extending SA to theories beyond bitvector, adding hy-
brid data abstraction on a subset of data operations, and performing a rigorous
analysis against other model checking tools including techniques beyond IC3.

Acknowledgement. We would like to thank the reviewers for their valuable com-
ments. The authors thank developers of Yosys [51], Yices 2 [24] and Z3 [23]
for making their tools openly available. The authors thank Alberto Griggio for
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