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Abstract. We present AVR, a push-button model checker for verifying
state transition systems directly at the source-code level. AVR uses infor-
mation embedded in the word-level syntax of the design representation
to automatically perform scalable model checking by combining a novel
syntax-guided abstraction-refinement technique with a word-level imple-
mentation of the IC3 algorithm. AVR provides independently-verifiable
certificates that offer provable assurance and are easy to relate to the
word-level system. Moreover, proof certificates can be further used in
innovative ways to extract key design information and are useful in a
growing number of applications.

1 Introduction

Model checking [27,28] techniques based on incremental induction (like IC3
[19,31]) have gained significant success [21] due to their property-directed na-
ture and clever use of incremental SAT solving. Bit-level implementations of IC3,
however, struggle with scalability due to being overwhelmed by low-level propo-
sitional learning [33]. Rapid advances in SMT solving [54,12] offer a solution and
allow for performing IC3 directly at the word level by combining the incremental
induction algorithm with an abstraction-refinement procedure [18,41,23,34].
AVR [2] is a model checker designed, primarily, for verifying safety properties
of hardware. It uses syntaz-guided abstraction [34], a generalization of implicit
predicate abstraction [22], to perform IC3-style reachability on a first-order logic
encoding of the transition relation resulting in word-level clause learning. Upon
termination, AVR will either produce a proof certificate, in the form of a state
formula representing an inductive invariant, if the safety property holds or a
counterexample execution trace if it fails. In both cases, confidence in the veri-
fication output is achieved by using an external proof checker to independently
confirm the correctness of the proof certificate or a trace simulator depicting the
sequence of transitions leading to the failure. Beyond hardware, these features
allow AVR to be used in innovative ways including the verification of distributed
protocols defined over unbounded domains [44,45]. AVR also provides a variety of
complementary verification techniques, such as data abstraction and interpola-
tion, to increase its scalability, as well as useful utilities, such as design statistics
and graphical visualizations, to provide high-level insights on the input design.
AVR was independently evaluated to be the best word-level verifier in the single
bit-vector track of Hardware Model Checking Competition (HWMCC) 2019 [17].


http://orcid.org/0000-0003-0520-8890

2 A. Goel and K. Sakallah

2 Motivation

Consider a predicate p := (a + b < 1) defined over two 32-bit variables a and
b. An equivalent propositional-level representation of p will involve a bit-blasted
expression involving 64 Boolean variables and several hundred clauses. As a
consequence, bit-level model checking algorithms do not scale as variable bit
widths increase and suffer from the so-called state-space explosion problem [26].

AVR derives its motivation from the fact that the word-level representation
of a problem contains useful high-level information that can be exploited for
better scalability. Building on our previous work [33,34], AVR uses this insight
to infer an implicit syntax-guided abstraction using terms built from objects
present in the word-level syntactic description of the problem (like a, b, 1, +,
<). The approach can be further combined with data abstraction using unin-
terpreted functions [20,11] to simplify reasoning for the underlying query solver.
This, coupled with efficient SMT solving, allows for an effective word-level model
checking algorithm that can scale better than bit-level engines for a variety of
verification problems. Moreover, the underlying induction-based verification pro-
cedure has the unique strength of producing word-level proof certificates that
are useful in a variety of applications [32,37,45,44].

3 System Architecture
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Fig. 1: Verification flow with AVR
UF: uninterpreted functions, BV: bit-vectors, LIA: linear integer arithmetic

Fig. 1 shows the architecture and verification flow of AVR.

Frontends in AVR, extract the model checking problem from inputs in different
formats using openly-available tools.

— Verilog + SystemVerilog Assertions [9] (using Yosys [55])

- VMT [§] (using MathSAT 5 [24])

- BTOR2 [51] (using Btor2Tools [3])
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AVR core performs IC3 with syntax-guided abstraction (IC3+SA) and imple-
ments several verification techniques and utilities (detailed in §3.1, §3.2).

SMT solver backends use the latest versions of state-of-the-art SMT solvers
(Yices 2 [30], Boolector [50], MathSAT 5 [24] and Z3 [48]) to efficiently integrate
incremental solver reasoning with AVR core using a C++ interface.

Multi-engine wrapper allows for process-level parallelism by running multiple
instances of AVR in parallel using proof race (as elaborated later in §3.3).

3.1 Techniques

At its core, AVR implements a word-level IC3 procedure where terms in the
implicit syntax of the problem are used as building blocks to perform IC3-style
clause learning at the word level using SMT solving. The key differences be-
tween IC3+SA [34], as implemented in AVR, and bit-level IC3 [19,31] can be
summarized as follows:
— IC3+SA uses relations defined over syntax terms (referred as atoms) instead
of individual state bits to implicitly represent an abstract state space.
— SMT solving is used instead of propositional SAT solving for solver reasoning.
— Counterexample-guided abstraction refinement [25] is used to automatically
eliminate the spurious behavior in the syntactically abstracted domain by
identifying new terms from the proof of unsatisfiability [42].

Within the core IC3+SA framework, AVR implements several optimizations and
important features that are helpful in improving model checking performance.

Core features

— Pre-processor optimizations perform simple transformations to standardize
and optimize the input model extracted from different input formats.

— Incremental refinement performs abstract counterexample analysis in an in-
cremental fashion by using single-step solver queries instead of conventional
multi-step path queries.

— Incremental caching allows caching frequently-used data structures to speed
up incremental SMT solving (at the cost of increasing memory usage).

— Multiple SMT backends allow configuring usage of different SMT solvers for
different kinds of SMT queries based on the type of query.

Add-on techniques

— Property-directed splitting breaks wide words at bit-field extraction and con-
catenation boundaries [10] in a property-directed manner.

— Data abstraction focuses on the control structure of the problem by com-
bining IC34+SA with data abstraction which converts data operations to
uninterpreted functions [20,11,41],.

— Interpolation adds Craig interpolants [46] and incremental refinement to
extract new terms from a spurious abstract counterexample.

— FEzxtract/Concat handler adds a nowvel dedicated engine to deal with light-
weight interpretation of bit-field extraction and concatenation operations.
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— Bounded model checking (BMC) [15] allows for an alternative to the IC3+SA
engine for quick bug hunting, especially for shallow bugs.

— Other options include adding global assumptions lazily, minimizing proof
certificates, making syntax-guided abstraction closer to (resp. farther from)
implicit predicate abstraction by decreasing (resp. increasing) abstraction
granularity, exploiting randomness during solving, and a few others.

Utilities
AVR also provides a number of useful utilities to the user including:
— Printing the problem in SMT-LIB format [13].

— Graphical visualizations of the problem and the word-level clause learning.
— Detailed statistics report on the input design and the verification run.

3.2 Certificates

Once a model checking problem is solved, there can be two possible outcomes:
either the property holds (safe), or it fails (unsafe).

If the property holds, IC3+SA produces an inductive invariant, i.e. an ap-
proximate fixpoint that establishes the property to be true in all executions of
the system. Inductive invariants act as proof certificates that guarantee the cor-
rectness of the verification outcome. AVR prints such proof certificates directly in
the SMT-LIB format, which allows for independent checking of their correctness
using an external SMT solver like Yices 2 or Z3. Since proof certificates are in
the word-level format, they are human-readable and much easier to relate to the
word-level input directly at the source-code level (as against bit-level invariants
which are usually too hard to understand). Proof certificates have many use-
ful applications, including the derivation of inductive validity cores [32], gaining
deeper insights on design behavior, deriving assume-guarantee verification condi-
tions [37,53], deriving helper assertions during multi-property verification [36,29],
and generalizing to quantified domains (as elaborated later in §4.3).

When the property fails, AVR produces a counterexample trace that estab-
lishes how to reach a bad state (a state where the property is false) starting from
an initial state. AVR prints the counterexample witness in BTOR2 witness for-
mat [51], which allows for independent verification of the execution trace using
a BTOR2 witness simulator [4]. This allows the designer to debug and pin-point
the source of error by analyzing the execution leading to the buggy state.

3.3 Proof Race

AVR supports a variety of configurations and add-on features (as discussed
in §3.1). Without detailed knowledge of the input, it is hard to tell upfront which
technique will perform the best. Different configurations are useful to tackle dif-
ferent types of problems, though manually trying different configurations can
become tedious for the user. To counter this, AVR offers a multi-engine wrap-
per called proof race that automatically runs multiple instances of AVR with
different configurations in parallel and offers process-level parallelism. Given a
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set of specified resource limits, proof race initiates multiple AVR instances and
terminates execution as soon as one of these instances successfully races to the
result. Such a portfolio-based approach is crucial in practice for fast verification
performance since no single technique performs best in all cases [21,16]. Tt is
also further strengthened by complementing AVR’s word-level techniques with
state-of-the-art model checking engines like ABC dprove [14], IC3ia [23] etc.

4 Case Studies'
4.1 Apache Buffer Overflow

We consider patched versions of two buffer overflow vulnerabilities [40] from
standard modules of the Apache web server [1].

apache-escape-absolute corrects a high severity vulnerability CVE2006-3747
[7] that fixes the out-of-bounds buffer overflow exploitation which allows a remote
attacker to cause a denial of service and execute arbitrary code via crafted URLs.
The patched version corrects a check (¢ < TOKEN_SZ) to (¢ < TOKEN_SZ — 1).

apache-get-tag fixes a medium severity vulnerability CVE-2004-0940 [6] that
exploits a buffer overflow when copying user-supplied tag strings into finite
buffers. A local attacker may leverage this issue to execute arbitrary code on
the affected computer with the privileges of the affected Apache server. The
patched version corrects a check that validates the length of the tag strings.

In less than a minute, AVR successfully verifies that both of these buffer
overflow exploits are unreachable in the patched versions for any buffer size.
AVR also provides human-readable proof certificates that are externally verified
using Z3, and provides provable assurance against these security vulnerabilities.

4.2 Public Key Authentication Protocol

The Needham-Schroeder public key authentication protocol [49] allows establish-
ing mutual authentication between an initiator A and a responder B, after which
some session involving the exchange of messages between them can take place.
Unfortunately, this protocol is vulnerable to a man-in-the-middle attack [43]. If
an intruder I can persuade A to initiate a session with him, he can relay the
messages to B and convince B that he is communicating with A.

We consider an instance of the protocol from HWMCC’19 [17,52] with 3
initiators and responders each, and with an unsafe state defined as a responder
being finished authentication with the intruder as a party. Within a minute,
AVR finds an execution trace that establishes how to reach an unsafe state. The
counterexample witness produced by AVR can be replayed using the BtorSIM
simulator [4] to verify the execution trace and to debug the protocol.

4.3 Verifying Distributed Protocols

Beyond verifying model checking problems from finite domains, AVR has shown
preliminary application in the verification of distributed protocols, which are

L All results presented in this paper can be replicated from [35,5].
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generally expressed over unbounded domains (with an unbounded number of
clients, servers, epochs, messages, etc.). The 14 system [45,44] demonstrates how
AVR can be used to verify a simpler finite version of the protocol, followed by
generalizing AVR’s proof certificates to the unbounded domain. For example, a
finite-domain invariant saying “clients C7 and Cs cannot both link to the server
S” ie. =(link(Cq, S) Alink(Cs, S)) can be generalized to the unbounded domain
as ‘no two different clients can both link to a server” i.e.

Veu,oa8 (C1 # Cy) = —(link(C4, S) Alink(Cs, S)).

5 Strengths

Control-centric properties, where much of the complexity lies in the control logic
(such as sequential equivalence checking, microprocessor instruction control unit,
key-value store) are much easier to verify using AVR. Syntax-guided abstraction
hides the domain complexity outside of the problem syntax, and automatically
separates important control-flow details from the irrelevant data component.
This, combined with data abstraction, allows for scalable model checking with
the capacity to scale independently of the variable bit widths [33,34].

Push-button verification using AVR eliminates the need for tedious human inter-
vention in verification (such as manual identification of abstraction predicates,
manually adding helper assertions) by automatic incremental construction of
abstraction and word-level clauses using the IC3+SA algorithm.

Provable assurance on the verification outcome is guaranteed by AVR using
independently-checkable proof certificates and counterexample traces.

Useful utilities that AVR provides, such as support for multiple input formats,
efficient integration with state-of-the-art SMT solvers, proof race, high-level sys-
tem statistics, graphical visualizations, etc. contribute to a user-friendly experi-
ence and ease of use.

6 Limitations

Heavy data dependency can make word-level techniques in AVR ineffective for
certain problems, especially when a majority of bit-precise values in the data
domain play an important role (for example, puzzle solving problems like Tower
of Hanoi [39], Peg Solitaire [38], etc. formulated as reachability problems [52]).
Logic synthesis and bit-level optimizations [14,47] can be very useful for such
problems and help bit-level checkers perform better than word-level techniques
by significantly decreasing the problem complexity at the bit level.

First-order logic fragments beyond quantifier-free bit-vectors, arrays and unin-
terpreted functions (such as non-linear arithmetic, floating-point numbers, quan-
tifiers, etc.) and properties beyond safety (such as liveness and fairness) have
limited support in the current tool implementation. AVR’s primary focus has
been on verification of safety properties defined on hardware systems.
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7 Conclusions

AVR provides a variety of techniques to efficiently perform automatic word-level
verification using SMT solvers with provable guarantees and security. AVR has
been effective in hardware verification [17,33,34] and shows significant promise
for the verification of distributed protocols [44,45]. In the future, we plan to
address some of its current limitations and extend its application to practical
verification problems beyond the hardware domain.
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generated and analyzed during the current study are available in the Zenodo
repository: https://doi.org/10.5281/zenodo.3677545. The authors would like to
thank Ranan Fraer, Ravi Prakash, Habeeb Farah and Ziyad Hanna from Cadence
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