
TACAS
Evaluation
Artifact

2020
Accepted

AVR: Abstractly Verifying Reachability

Aman Goel(�) and Karem Sakallah

University of Michigan, Ann Arbor MI 48105, USA
{amangoel,karem}@umich.edu

Abstract. We present AVR, a push-button model checker for verifying
state transition systems directly at the source-code level. AVR uses infor-
mation embedded in the word-level syntax of the design representation
to automatically perform scalable model checking by combining a novel
syntax-guided abstraction-refinement technique with a word-level imple-
mentation of the IC3 algorithm. AVR provides independently-verifiable
certificates that offer provable assurance and are easy to relate to the
word-level system. Moreover, proof certificates can be further used in
innovative ways to extract key design information and are useful in a
growing number of applications.

1 Introduction

Model checking [27,28] techniques based on incremental induction (like IC3
[19,31]) have gained significant success [21] due to their property-directed na-
ture and clever use of incremental SAT solving. Bit-level implementations of IC3,
however, struggle with scalability due to being overwhelmed by low-level propo-
sitional learning [33]. Rapid advances in SMT solving [54,12] offer a solution and
allow for performing IC3 directly at the word level by combining the incremental
induction algorithm with an abstraction-refinement procedure [18,41,23,34].

AVR [2] is a model checker designed, primarily, for verifying safety properties
of hardware. It uses syntax-guided abstraction [34], a generalization of implicit
predicate abstraction [22], to perform IC3-style reachability on a first-order logic
encoding of the transition relation resulting in word-level clause learning. Upon
termination, AVR will either produce a proof certificate, in the form of a state
formula representing an inductive invariant, if the safety property holds or a
counterexample execution trace if it fails. In both cases, confidence in the veri-
fication output is achieved by using an external proof checker to independently
confirm the correctness of the proof certificate or a trace simulator depicting the
sequence of transitions leading to the failure. Beyond hardware, these features
allow AVR to be used in innovative ways including the verification of distributed
protocols defined over unbounded domains [44,45]. AVR also provides a variety of
complementary verification techniques, such as data abstraction and interpola-
tion, to increase its scalability, as well as useful utilities, such as design statistics
and graphical visualizations, to provide high-level insights on the input design.
AVR was independently evaluated to be the best word-level verifier in the single
bit-vector track of Hardware Model Checking Competition (HWMCC) 2019 [17].

http://orcid.org/0000-0003-0520-8890

2 A. Goel and K. Sakallah

2 Motivation

Consider a predicate p := (a + b < 1) defined over two 32-bit variables a and
b. An equivalent propositional-level representation of p will involve a bit-blasted
expression involving 64 Boolean variables and several hundred clauses. As a
consequence, bit-level model checking algorithms do not scale as variable bit
widths increase and suffer from the so-called state-space explosion problem [26].

AVR derives its motivation from the fact that the word-level representation
of a problem contains useful high-level information that can be exploited for
better scalability. Building on our previous work [33,34], AVR uses this insight
to infer an implicit syntax-guided abstraction using terms built from objects
present in the word-level syntactic description of the problem (like a, b, 1, +,
<). The approach can be further combined with data abstraction using unin-
terpreted functions [20,11] to simplify reasoning for the underlying query solver.
This, coupled with efficient SMT solving, allows for an effective word-level model
checking algorithm that can scale better than bit-level engines for a variety of
verification problems. Moreover, the underlying induction-based verification pro-
cedure has the unique strength of producing word-level proof certificates that
are useful in a variety of applications [32,37,45,44].

3 System Architecture

Verilog
(via Yosys)

VMT
(via MathSat 5)

BTOR2
(via Btor2Tools)

Pre-processor
- simple optimizations
- property-directed splitting

Yices 2
(UF, BV, LIA, Arrays)

Boolector
(BV, Arrays)

MathSAT 5
(UF, BV, LIA, Arrays,

interpolation)

Z3
(UF, BV, LIA,

future extensions)

Proof
Race

Multi-
Engine
Wrapper

Frontends SMT Solver
Backends*

Utilities
.smt2 .stats .dot

Certificate
proof.smt2 cex.witness

User Input
.v .vmt .btor2

AVR Core

IC3 + SA
- incremental refinement
- incremental caching
- extract / concat handler

Features

- data abstraction
- interpolation
- bounded model checking

Add-ons

- certificate printer
- .dot visualizer

Utilities
*quantifier free

Fig. 1: Verification flow with AVR
UF: uninterpreted functions, BV: bit-vectors, LIA: linear integer arithmetic

Fig. 1 shows the architecture and verification flow of AVR.

Frontends in AVR extract the model checking problem from inputs in different
formats using openly-available tools.

– Verilog + SystemVerilog Assertions [9] (using Yosys [55])
– VMT [8] (using MathSAT 5 [24])
– BTOR2 [51] (using Btor2Tools [3])

AVR: Abstractly Verifying Reachability 3

AVR core performs IC3 with syntax-guided abstraction (IC3+SA) and imple-
ments several verification techniques and utilities (detailed in §3.1, §3.2).

SMT solver backends use the latest versions of state-of-the-art SMT solvers
(Yices 2 [30], Boolector [50], MathSAT 5 [24] and Z3 [48]) to efficiently integrate
incremental solver reasoning with AVR core using a C++ interface.

Multi-engine wrapper allows for process-level parallelism by running multiple
instances of AVR in parallel using proof race (as elaborated later in §3.3).

3.1 Techniques

At its core, AVR implements a word-level IC3 procedure where terms in the
implicit syntax of the problem are used as building blocks to perform IC3-style
clause learning at the word level using SMT solving. The key differences be-
tween IC3+SA [34], as implemented in AVR, and bit-level IC3 [19,31] can be
summarized as follows:
– IC3+SA uses relations defined over syntax terms (referred as atoms) instead

of individual state bits to implicitly represent an abstract state space.
– SMT solving is used instead of propositional SAT solving for solver reasoning.
– Counterexample-guided abstraction refinement [25] is used to automatically

eliminate the spurious behavior in the syntactically abstracted domain by
identifying new terms from the proof of unsatisfiability [42].

Within the core IC3+SA framework, AVR implements several optimizations and
important features that are helpful in improving model checking performance.

Core features

– Pre-processor optimizations perform simple transformations to standardize
and optimize the input model extracted from different input formats.

– Incremental refinement performs abstract counterexample analysis in an in-
cremental fashion by using single-step solver queries instead of conventional
multi-step path queries.

– Incremental caching allows caching frequently-used data structures to speed
up incremental SMT solving (at the cost of increasing memory usage).

– Multiple SMT backends allow configuring usage of different SMT solvers for
different kinds of SMT queries based on the type of query.

Add-on techniques

– Property-directed splitting breaks wide words at bit-field extraction and con-
catenation boundaries [10] in a property-directed manner.

– Data abstraction focuses on the control structure of the problem by com-
bining IC3+SA with data abstraction which converts data operations to
uninterpreted functions [20,11,41],.

– Interpolation adds Craig interpolants [46] and incremental refinement to
extract new terms from a spurious abstract counterexample.

– Extract/Concat handler adds a novel dedicated engine to deal with light-
weight interpretation of bit-field extraction and concatenation operations.

4 A. Goel and K. Sakallah

– Bounded model checking (BMC) [15] allows for an alternative to the IC3+SA
engine for quick bug hunting, especially for shallow bugs.

– Other options include adding global assumptions lazily, minimizing proof
certificates, making syntax-guided abstraction closer to (resp. farther from)
implicit predicate abstraction by decreasing (resp. increasing) abstraction
granularity, exploiting randomness during solving, and a few others.

Utilities

AVR also provides a number of useful utilities to the user including:
– Printing the problem in SMT-LIB format [13].
– Graphical visualizations of the problem and the word-level clause learning.
– Detailed statistics report on the input design and the verification run.

3.2 Certificates

Once a model checking problem is solved, there can be two possible outcomes:
either the property holds (safe), or it fails (unsafe).

If the property holds, IC3+SA produces an inductive invariant, i.e. an ap-
proximate fixpoint that establishes the property to be true in all executions of
the system. Inductive invariants act as proof certificates that guarantee the cor-
rectness of the verification outcome. AVR prints such proof certificates directly in
the SMT-LIB format, which allows for independent checking of their correctness
using an external SMT solver like Yices 2 or Z3. Since proof certificates are in
the word-level format, they are human-readable and much easier to relate to the
word-level input directly at the source-code level (as against bit-level invariants
which are usually too hard to understand). Proof certificates have many use-
ful applications, including the derivation of inductive validity cores [32], gaining
deeper insights on design behavior, deriving assume-guarantee verification condi-
tions [37,53], deriving helper assertions during multi-property verification [36,29],
and generalizing to quantified domains (as elaborated later in §4.3).

When the property fails, AVR produces a counterexample trace that estab-
lishes how to reach a bad state (a state where the property is false) starting from
an initial state. AVR prints the counterexample witness in BTOR2 witness for-
mat [51], which allows for independent verification of the execution trace using
a BTOR2 witness simulator [4]. This allows the designer to debug and pin-point
the source of error by analyzing the execution leading to the buggy state.

3.3 Proof Race

AVR supports a variety of configurations and add-on features (as discussed
in §3.1). Without detailed knowledge of the input, it is hard to tell upfront which
technique will perform the best. Different configurations are useful to tackle dif-
ferent types of problems, though manually trying different configurations can
become tedious for the user. To counter this, AVR offers a multi-engine wrap-
per called proof race that automatically runs multiple instances of AVR with
different configurations in parallel and offers process-level parallelism. Given a

AVR: Abstractly Verifying Reachability 5

set of specified resource limits, proof race initiates multiple AVR instances and
terminates execution as soon as one of these instances successfully races to the
result. Such a portfolio-based approach is crucial in practice for fast verification
performance since no single technique performs best in all cases [21,16]. It is
also further strengthened by complementing AVR’s word-level techniques with
state-of-the-art model checking engines like ABC dprove [14], IC3ia [23] etc.

4 Case Studies1

4.1 Apache Buffer Overflow

We consider patched versions of two buffer overflow vulnerabilities [40] from
standard modules of the Apache web server [1].

apache-escape-absolute corrects a high severity vulnerability CVE2006-3747

[7] that fixes the out-of-bounds buffer overflow exploitation which allows a remote
attacker to cause a denial of service and execute arbitrary code via crafted URLs.
The patched version corrects a check (c < TOKEN SZ) to (c < TOKEN SZ− 1).

apache-get-tag fixes a medium severity vulnerability CVE-2004-0940 [6] that
exploits a buffer overflow when copying user-supplied tag strings into finite
buffers. A local attacker may leverage this issue to execute arbitrary code on
the affected computer with the privileges of the affected Apache server. The
patched version corrects a check that validates the length of the tag strings.

In less than a minute, AVR successfully verifies that both of these buffer
overflow exploits are unreachable in the patched versions for any buffer size.
AVR also provides human-readable proof certificates that are externally verified
using Z3, and provides provable assurance against these security vulnerabilities.

4.2 Public Key Authentication Protocol

The Needham-Schroeder public key authentication protocol [49] allows establish-
ing mutual authentication between an initiator A and a responder B, after which
some session involving the exchange of messages between them can take place.
Unfortunately, this protocol is vulnerable to a man-in-the-middle attack [43]. If
an intruder I can persuade A to initiate a session with him, he can relay the
messages to B and convince B that he is communicating with A.

We consider an instance of the protocol from HWMCC’19 [17,52] with 3
initiators and responders each, and with an unsafe state defined as a responder
being finished authentication with the intruder as a party. Within a minute,
AVR finds an execution trace that establishes how to reach an unsafe state. The
counterexample witness produced by AVR can be replayed using the BtorSIM
simulator [4] to verify the execution trace and to debug the protocol.

4.3 Verifying Distributed Protocols

Beyond verifying model checking problems from finite domains, AVR has shown
preliminary application in the verification of distributed protocols, which are

1 All results presented in this paper can be replicated from [35,5].

6 A. Goel and K. Sakallah

generally expressed over unbounded domains (with an unbounded number of
clients, servers, epochs, messages, etc.). The I4 system [45,44] demonstrates how
AVR can be used to verify a simpler finite version of the protocol, followed by
generalizing AVR’s proof certificates to the unbounded domain. For example, a
finite-domain invariant saying “clients C1 and C2 cannot both link to the server
S” i.e. ¬(link(C1, S)∧ link(C2, S)) can be generalized to the unbounded domain
as “no two different clients can both link to a server” i.e.
∀C1,C2,S (C1 6= C2) =⇒ ¬(link(C1, S) ∧ link(C2, S)).

5 Strengths

Control-centric properties, where much of the complexity lies in the control logic
(such as sequential equivalence checking, microprocessor instruction control unit,
key-value store) are much easier to verify using AVR. Syntax-guided abstraction
hides the domain complexity outside of the problem syntax, and automatically
separates important control-flow details from the irrelevant data component.
This, combined with data abstraction, allows for scalable model checking with
the capacity to scale independently of the variable bit widths [33,34].

Push-button verification using AVR eliminates the need for tedious human inter-
vention in verification (such as manual identification of abstraction predicates,
manually adding helper assertions) by automatic incremental construction of
abstraction and word-level clauses using the IC3+SA algorithm.

Provable assurance on the verification outcome is guaranteed by AVR using
independently-checkable proof certificates and counterexample traces.

Useful utilities that AVR provides, such as support for multiple input formats,
efficient integration with state-of-the-art SMT solvers, proof race, high-level sys-
tem statistics, graphical visualizations, etc. contribute to a user-friendly experi-
ence and ease of use.

6 Limitations

Heavy data dependency can make word-level techniques in AVR ineffective for
certain problems, especially when a majority of bit-precise values in the data
domain play an important role (for example, puzzle solving problems like Tower
of Hanoi [39], Peg Solitaire [38], etc. formulated as reachability problems [52]).
Logic synthesis and bit-level optimizations [14,47] can be very useful for such
problems and help bit-level checkers perform better than word-level techniques
by significantly decreasing the problem complexity at the bit level.

First-order logic fragments beyond quantifier-free bit-vectors, arrays and unin-
terpreted functions (such as non-linear arithmetic, floating-point numbers, quan-
tifiers, etc.) and properties beyond safety (such as liveness and fairness) have
limited support in the current tool implementation. AVR’s primary focus has
been on verification of safety properties defined on hardware systems.

AVR: Abstractly Verifying Reachability 7

7 Conclusions

AVR provides a variety of techniques to efficiently perform automatic word-level
verification using SMT solvers with provable guarantees and security. AVR has
been effective in hardware verification [17,33,34] and shows significant promise
for the verification of distributed protocols [44,45]. In the future, we plan to
address some of its current limitations and extend its application to practical
verification problems beyond the hardware domain.

Data Availability Statement and Acknowledgments. The software and datasets
generated and analyzed during the current study are available in the Zenodo
repository: https://doi.org/10.5281/zenodo.3677545. The authors would like to
thank Ranan Fraer, Ravi Prakash, Habeeb Farah and Ziyad Hanna from Cadence
Design Systems for their help in shaping some of the concepts presented in this
paper.

References

1. Apache HTTP server project. https://httpd.apache.org

2. AVR (github). https://github.com/aman-goel/avr

3. Btor2Tools. https://github.com/Boolector/btor2tools

4. BtorSIM. https://github.com/Boolector/btor2tools/tree/master/src/btorsim

5. Experiments. https://github.com/aman-goel/tacas20ae

6. National Vulnerability Database - CVE-2004-0940. https://nvd.nist.gov/vuln/
detail/CVE-2004-0940

7. National Vulnerability Database - CVE-2006-3747. https://nvd.nist.gov/vuln/
detail/CVE-2006-3747

8. Verification Modulo Theories. http://www.vmt-lib.org

9. Ieee standard for systemverilog–unified hardware design, specification, and verifi-
cation language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012) pp. 1–1315
(Feb 2018). https://doi.org/10.1109/IEEESTD.2018.8299595

10. Andraus, Z.S., Sakallah, K.A.: Automatic abstraction and verification of verilog
models. In: Proceedings. 41st Design Automation Conference, 2004. pp. 218–223
(July 2004). https://doi.org/10.1145/996566.996629

11. Babić, D., Hu, A.J.: Structural abstraction of software verification conditions.
In: Damm, W., Hermanns, H. (eds.) Computer Aided Verification. pp. 366–378.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

12. Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 years of
SMT-COMP. Journal of Automated Reasoning 50(3), 243–277 (Apr 2012).
https://doi.org/10.1007/s10817-012-9246-5

13. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

14. Berkeley Logic Synthesis and Verification Group: ABC: A system for sequential
synthesis and verification. http://www.eecs.berkeley.edu/∼alanmi/abc/ (2017)

15. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds.
In: Cleaveland, W.R. (ed.) Tools and Algorithms for the Construction and Analysis
of Systems. pp. 193–207. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

https://doi.org/10.5281/zenodo.3677545
https://httpd.apache.org
https://github.com/aman-goel/avr
https://github.com/Boolector/btor2tools
https://github.com/Boolector/btor2tools/tree/master/src/btorsim
https://github.com/aman-goel/tacas20ae
https://nvd.nist.gov/vuln/detail/CVE-2004-0940
https://nvd.nist.gov/vuln/detail/CVE-2004-0940
https://nvd.nist.gov/vuln/detail/CVE-2006-3747
https://nvd.nist.gov/vuln/detail/CVE-2006-3747
http://www.vmt-lib.org
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1145/996566.996629
https://doi.org/10.1007/s10817-012-9246-5
www.SMT-LIB.org
http://www.eecs.berkeley.edu/~alanmi/abc/

8 A. Goel and K. Sakallah

16. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp. 9–9. IEEE
(2017)

17. Biere, A., Preiner, M.: Hardware model checking competition (HWMCC) 2019.
http://fmv.jku.at/hwmcc19

18. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (ctigar). In: Biere, A., Bloem, R. (eds.) Computer
Aided Verification. pp. 831–848. Springer International Publishing, Cham (2014)

19. Bradley, A.R.: Sat-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) Verification, Model Checking, and Abstract Interpretation. pp. 70–87.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

20. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor con-
trol. In: Dill, D.L. (ed.) Computer Aided Verification. pp. 68–80. Springer Berlin
Heidelberg, Berlin, Heidelberg (1994)

21. Cabodi, G., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S., Ven-
draminetto, D., Biere, A., Heljanko, K.: Hardware model checking competition
2014: An analysis and comparison of model checkers and benchmarks. Journal
on Satisfiability, Boolean Modeling and Computation 9(1), 135172 (Jan 2016).
https://doi.org/10.3233/SAT190106

22. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Ic3 modulo theories via implicit
predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems. pp. 46–61. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2014)

23. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Formal Methods in System Design 49(3), 190–
218 (Sep 2016). https://doi.org/10.1007/s10703-016-0257-4

24. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 smt solver.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 93–107. Springer (2013)

25. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided Veri-
fication. pp. 154–169. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

26. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explosion
problem in model checking. In: Informatics. pp. 176–194. Springer (2001)

27. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. Communications of the ACM 52(11), 74–84 (2009)

28. Clarke Jr, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model checking.
MIT press (2018)

29. Dureja, R., Rozier, K.Y.: Fuseic3: An algorithm for checking large design spaces.
In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp. 164–171 (Oct
2017). https://doi.org/10.23919/FMCAD.2017.8102255

30. Dutertre, B.: Yices2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification.
pp. 737–744. Springer International Publishing, Cham (2014)

31. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property di-
rected reachability. In: 2011 Formal Methods in Computer-Aided Design (FM-
CAD). pp. 125–134. IEEE (2011)

32. Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of inductive valid-
ity cores for safety properties. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. pp. 314–325
(2016)

http://fmv.jku.at/hwmcc19
https://doi.org/10.3233/SAT190106
https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.23919/FMCAD.2017.8102255

AVR: Abstractly Verifying Reachability 9

33. Goel, A., Sakallah, K.: Empirical evaluation of ic3-based model check-
ing techniques on verilog rtl designs. In: 2019 Design, Automation Test
in Europe Conference Exhibition (DATE). pp. 618–621 (March 2019).
https://doi.org/10.23919/DATE.2019.8715289

34. Goel, A., Sakallah, K.: Model checking of verilog rtl using ic3 with syntax-guided
abstraction. In: Badger, J.M., Rozier, K.Y. (eds.) NASA Formal Methods. pp.
166–185. Springer International Publishing, Cham (2019)

35. Goel, A., Sakallah, K.: AVR: Abstractly Verifying Reachability (Feb 2020).
https://doi.org/10.5281/zenodo.3677545

36. Goldberg, E., Gdemann, M., Kroening, D., Mukherjee, R.: Efficient verification
of multi-property designs (the benefit of wrong assumptions). In: 2018 Design,
Automation Test in Europe Conference Exhibition (DATE). pp. 43–48 (March
2018). https://doi.org/10.23919/DATE.2018.8341977

37. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Methodol-
ogy and case studies. In: Hu, A.J., Vardi, M.Y. (eds.) Computer Aided Verification.
pp. 440–451. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

38. Jefferson, C., Miguel, A., Miguel, I., Tarim, S.A.: Modelling and solving english
peg solitaire. Computers & Operations Research 33(10), 2935–2959 (Oct 2006).
https://doi.org/10.1016/j.cor.2005.01.018

39. Kotovsky, K., Hayes, J., Simon, H.: Why are some problems hard? evi-
dence from tower of hanoi. Cognitive Psychology 17(2), 248–294 (Apr 1985).
https://doi.org/10.1016/0010-0285(85)90009-x

40. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for
software model checkers. In: Proceedings of the Twenty-Second IEEE/ACM In-
ternational Conference on Automated Software Engineering. p. 389392. ASE
07, Association for Computing Machinery, New York, NY, USA (2007).
https://doi.org/10.1145/1321631.1321691

41. Lee, S., Sakallah, K.A.: Unbounded scalable verification based on approximate
property-directed reachability and datapath abstraction. In: Biere, A., Bloem, R.
(eds.) Computer Aided Verification. pp. 849–865. Springer International Publish-
ing, Cham (2014)

42. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (Sep 2007).
https://doi.org/10.1007/s10817-007-9084-z

43. Lowe, G.: An attack on the needham-schroeder public-key authentica-
tion protocol. Information Processing Letters 56(3), 131 – 133 (1995).
https://doi.org/10.1016/0020-0190(95)00144-2

44. Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: I4: In-
cremental inference of inductive invariants for verification of distributed protocols.
In: Proceedings of the 27th ACM Symposium on Operating Systems Principles.
p. 370384. SOSP 19, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3341301.3359651

45. Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: Towards
automatic inference of inductive invariants. In: Proceedings of the Workshop on
Hot Topics in Operating Systems. p. 3036. HotOS 19, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3317550.3321451

46. McMillan, K.L.: Applications of craig interpolants in model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems. pp. 1–12. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

https://doi.org/10.23919/DATE.2019.8715289
https://doi.org/10.5281/zenodo.3677545
https://doi.org/10.23919/DATE.2018.8341977
https://doi.org/10.1016/j.cor.2005.01.018
https://doi.org/10.1016/0010-0285(85)90009-x
https://doi.org/10.1145/1321631.1321691
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1016/0020-0190(95)00144-2
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3317550.3321451

10 A. Goel and K. Sakallah

47. Mishchenko, A., Case, M., Brayton, R., Jang, S.: Scalable and scalably-verifiable
sequential synthesis. In: 2008 IEEE/ACM International Conference on Computer-
Aided Design. pp. 234–241. IEEE (2008)

48. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

49. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in
large networks of computers. Commun. ACM 21(12), 993999 (Dec 1978).
https://doi.org/10.1145/359657.359659

50. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. Journal on Sat-
isfiability, Boolean Modeling and Computation 9(1), 5358 (Jun 2015).
https://doi.org/10.3233/SAT190101

51. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , btormc and boolector3.0. In:
Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification. pp. 587–595.
Springer International Publishing, Cham (2018)

52. Pelánek, R.: Beem: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) Model Checking Software. pp. 263–267. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2007)

53. Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., et al.: Dependent types
and multi-monadic effects in f. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 256–270 (2016)

54. Weber, T., Conchon, S., Dharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
smt competition 2015 - 2018. Journal on Satisfiability, Boolean Modeling and Com-
putation 11(1), 221259 (Sep 2019). https://doi.org/10.3233/SAT190123

55. Wolf, C.: Yosys open synthesis suite. http://www.clifford.at/yosys/

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1145/359657.359659
https://doi.org/10.3233/SAT190101
https://doi.org/10.3233/SAT190123
http://www.clifford.at/yosys/
http://creativecommons.org/licenses/by/4.0/

	AVR: Abstractly Verifying Reachability

