Towards an Automatic Proof of Lamport's Paxos

Aman Goel and Karem Sakallah
University of Michigan, Ann Arbor
amangoel@umich.edu

Distributed Protocol \equiv Architectural Blueprint

Google
Cloud Spanner

Why Verify?

Akamai outage was due to 'DNS bug'

DatacenterDynamics
"At 15:46 UTC today, a software configuration update triggered a bug in the DNS system, the system that directs browsers to websites

sh CNBC

DeFi bug accidentally gives $\mathbf{\$ 9 0}$ million to users, founder begs them to return it

October 1, 2021 About $\$ 90$ million has mistakenly gone out to users of Compound, a popular decentralized-finance staking protocol, and the founder is begging users to voluntarily return the tokens.

```
if (supplierIndex == 0 && supplyIndex > compInitialIndex) {
    // Cover's the case where ustrs supprreu cukens vervore the market's supply state index was set.
    Rewards the user with COMP accrued from the start of when supplier rewards were finst
    supplierIndex = compInitialIndex;
}
Double memory deltaIndex = Double({mantissa: sub_(supplyIndex, supplierIndex)});
```


ToyConsensus Protocol ${ }^{1}$ in TLA+

Verifying Distributed Protocols

```
Candidates
```


Challenges

- Infinite State Space
- Reasoning is Hard/Undecidable
- Not Scalable

IC3PO: IC3 for Proving Protocol Properties

Finite-Domain Model Checking

Spatial Regularity

Temporal Regularity

Regularity \leftrightarrow Quantification

Hierarchical Structure

Leslie Lamport tlaplus.Il@gmail.com: Apr 15 09:45AM -0700

While large sets can cause performance problems, it's rare for an algorithm to be correct for a set of 3 elements and not for a set of 1000 elements.

Symmetry Boosting using Protocol's Domain Symmetries

Range Boosting over Totally-ordered Domains

Compact Quantified Clause Learning

IC3PO: IC3 for Proving Protocol Properties

Finite-Domain Model Checking

Unbounded Protocol

Voters

Candidates

State-space size = unbounded

Finite Instance

Voters

Candidates 2

Challenges
Infinite State Space
Reasoning is Hard/Undecidable
Not Scalable

Benefits

Finite State Space
Always Decidable
Fast reasoning with SMT solvers

Symmetry Boosting for Symmetric Domains

Finite Instance

All voters are symmetrically-equivalent

- All domain elements can be permuted arbitrarily
- Learn all symmetrically-equivalent clauses without any additional reasoning
- Compact quantified clauses

Relating Symmetry with Quantification

Form	Clause	Boosted Clause
\forall	$\operatorname{clause}_{1}=\neg \operatorname{vote}(\mathrm{A}, \alpha) \vee \neg \operatorname{vote}(\mathrm{A}, \beta)$	Quantified $\left(\right.$ clause $\left._{1}\right)=\forall \mathrm{X} \in \operatorname{Voters}_{3}: \neg \operatorname{vote}(\mathrm{X}, \alpha) \vee \neg \operatorname{vote}(\mathrm{X}, \beta)$
\exists	$\operatorname{clause}_{2}=\operatorname{vote}(\mathrm{A}, \alpha) \vee \operatorname{vote}(\mathrm{B}, \alpha) \vee \operatorname{vote}(\mathrm{C}, \alpha)$	Quantified $\left(\right.$ clause $\left._{2}\right)=\exists \mathrm{Y} \in \operatorname{Voters}_{3}: \operatorname{vote}(\mathrm{Y}, \alpha)$
$\forall \exists$	$\operatorname{clause}_{3}=\neg \operatorname{vote}(\mathrm{A}, \alpha) \vee \operatorname{vote}(\mathrm{B}, \alpha) \vee \operatorname{vote}(\mathrm{C}, \alpha)$	Quantified $\left(\right.$ clause $\left._{2}\right)=\forall \mathrm{X} \in \operatorname{Voters}_{3}: \exists \mathrm{Y} \in \operatorname{Voters}_{3}:$
		$\neg \operatorname{vote}(\mathrm{X}, \alpha) \vee[(\mathrm{X} \neq \mathrm{Y}) \wedge \operatorname{vote}(\mathrm{Y}, \alpha)]$

Voting Protocol ${ }^{1}$ in TLA+

1 CONSTANTS value, acceptor, quorum

```
2 ballot \triangleq Nat\cup{-1}
```

3 VARIABLES votes, maxBal
4 votes $\in($ acceptor \times ballot \times value $) \rightarrow$ BOOLEAN
$\max B a l \in$ acceptor \rightarrow ballot
5 ASSUME $\forall Q \in$ quorum $: Q \subseteq$ acceptor $\wedge \forall Q_{1}, Q_{2} \in$ quorum : $Q_{1} \cap Q_{2} \neq\{ \}$
6 chosen $A t(b, v) \triangleq \exists Q \in$ quorum $: \forall A \in Q: \operatorname{votes}(A, b, v)$
$7 \operatorname{chosen}(v) \triangleq \exists B \in \mathrm{ballot}: \operatorname{chosen} A t(B, v)$
8 showsSafeAt $(q, b, v) \triangleq \ldots$
$9 \quad$ isSafeAt $(b, v) \triangleq \ldots$
$10 \operatorname{IncreaseMaxBal}(a, b) \triangleq \ldots$
$11 \operatorname{VoteFor}(a, b, v) \triangleq \ldots$

12 Init $\triangleq \forall A, B, V: \neg \operatorname{votes}(A, B, V) \wedge \forall A: \operatorname{maxBal}(A)=-1$
13 Next $\triangleq \exists A, B, V:$ IncreaseMaxBal $(A, B) \vee \operatorname{VoteFor}(A, B, V)$
14 Safety $\triangleq \forall V_{1}, V_{2}: \operatorname{chosen}\left(V_{1}\right) \wedge \operatorname{chosen}\left(V_{2}\right) \rightarrow V_{1}=V_{2}$

Totally-Ordered Domains

Unbounded Protocol

Voters

Challenges

Cannot be permuted arbitrarily
Unsafe combinations due to special elements

Solution

Respect the total order
Respect reachability constraints

Finite-Domain Model Checking

Unbounded Protocol

Voters

Candidates

Finite Instance

$$
3 \times 2 \times \square \times \square
$$

Boosting for Totally-Ordered Domains

Respect the total order, i.e., only consider ordered permutations

Boosting for Totally-Ordered Domains

Respect reachability constraints, i.e., check unreachability with additional SMT queries

Range Boosting for Totally-Ordered Domains

Range Boosting for Totally-Ordered Domains


```
Safe Orbit(clause) =
    \([\operatorname{chosen}(\alpha, 1) \rightarrow-\operatorname{vote}(C, \beta, 2)] \wedge\)
    \([\operatorname{chosen}(\alpha, 1) \rightarrow-\operatorname{vote}(C, \beta, 3)] \wedge\)
    \([\operatorname{chosen}(\alpha, 2) \rightarrow-\operatorname{vote}(C, \beta, 3)]\)
```


Range Boosting for Totally-Ordered Domains

Encode unreachable combinations as a quantified range constraint

```
Safe Orbit(clause) =
    [ chosen(\alpha,1)->-vote(C, \beta, 2)] ^
    [chosen(\alpha,1)->-vote(C, \beta, 3)]^
[ chosen(\alpha, 2) ->-\operatorname{vote}(C, \beta, 3)]
```

Quantified(clause) =
三 $\quad \forall \mathrm{X}, \mathrm{Y} \in$ ballot $_{4}$:
$(0<\mathrm{X}<\mathrm{Y}) \rightarrow[\operatorname{chosen}(\alpha, \mathrm{X}) \rightarrow-\operatorname{vote}(\mathrm{C}, \beta, \mathrm{Y})]$

IC3PO: IC3 for Proving Protocol Properties

Evaluation

IC3PO	DISTAI	SWISS	FOL-IC3	14	UPDR
NFM'21	OSDI'21	NSDI'21	PLDI'20	SOSP'19	JACM'17

Evaluation

| IC3PO | DISTAI | SWISS | FOL-IC3 | 14 | UPDR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NFM'21 | OSDI'21 | NSDI'21 | PLDI'20 | SOSP'19 | JACM'17 |

Evaluation

IC3PO	DISTAI	SWISS	FOL-IC3	14
NFM'21	OSDI'21	NSDI'21	PLDI'20	SOSP'19

Evaluation

IC3PO	DISTAI	SWISS	FOL-IC3	14
NFM'21	OSDI'21	NSDI'21	PLDI'20	SOSP'19

Evaluation

| IC3PO | DISTAI | SWISS | FOL-IC3 | 14 | UPDR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NFM'21 | OSDI'21 | NSDI'21 | PLDI'20 | SOSP'19 | JACM'17 |

Evaluation

IC3PO	DISTAI	SWISS	FOL-IC3	14	UPDR
NFM'21	OSDI'21	NSDI'21	PLDI'20	SOSP'19	JACM'17

Evaluation

IC3PO	DISTAI	SWISS	FOL-IC3	14
NFM'21	OSDI'21	NSDI'21	PLDI'20	SOSP'19

Evaluation

Proving Paxos Automatically

Voting

```
CONSTANTS value, acceptor, quoru
    ballot\triangleqNat\cup{-1}
3 variables msg1a,msg1b,msg2a,msg2b,maxBal
-Hal, maxVal
    msg1b}\in(\mathrm{ acceptor }\times\mathrm{ ballot }\times\mathrm{ ballot }\times\mathrm{ value) }->\mathrm{ BooleAN
    msg2a}\in(\mathrm{ ballot }\times\mathrm{ value) }->\mathrm{ BOOLEAN
    msg2b \in (acceptor }\times\mathrm{ ballot }\times\mathrm{ value) }->\mathrm{ BOOLEAN
    maxBal }\in\mathrm{ acceptor }->\mathrm{ ballot
    maxVBal }\in\mathrm{ acceptor }->\mathrm{ ballot
    maxVal }\in\mathrm{ acceptor }->\mathrm{ value
    none \invalue
5ASSUME ^ \forallQ\in quorum:Q\subseteq acceptor
\wedge }\forall\mp@subsup{Q}{1}{},\mp@subsup{Q}{2}{}\in\mathrm{ quorum : Q1 }\cap\mp@subsup{Q}{2}{}\not={
6 chosenAt(b,v)\triangleq\existsQ\in quorum:}\forallA\inQ:msg2b(A,b,v
7 chosen(v)\triangleq\existsB\in\operatorname{ballot: chosenAt(B,v})
8 showsSafeAtPaxos(q,b,v)\triangleq
    \wedge \forallA\inq:\existsM\mp@subsup{M}{b}{}\in\mathrm{ ballot: }\exists\mp@subsup{M}{v}{}\in\mathrm{ value : msg1b (A,b,Mb,Mv}
        \vee\forallA\in acceptor: }\forall\mp@subsup{M}{b}{}\in\mathrm{ ballot : }\forall\mp@subsup{M}{v}{}\in\mathrm{ value
        \neg(A\inq^msg1b(A,b,Mb,Mv)^(M
        \vee \existsM M G ballot:
            A\existsA\inq:msg1b (A,b,Mb,v)^(Mb}=-1
                *)
9 isSafeAtPaxos(b,v)\triangleq\existsQ\inquorum: showsSafeAtPaxos(Q,b,v)
10 Phase1a(b)
    ^msg1a' = [msq1a EXCEPT ! [b]=T
        ^ UNCHANGED msg1b,msg2a,msg2b,maxBal,maxVBal,maxVal
11 Phase1b (a,b)\triangleq
    \wedge b\not=-1^ msg1a(b) ^b> maxBal(a)
    ^ maxBal'}=[\mathrm{ maxBal EXCEPT ![a]=b]
    ^msg1\mp@subsup{b}{}{\prime}=[msg1b EXCEPT ![a,b,maxVBal(a),maxVal(a)]=T
12 Phase2a(b,v)\triangleq
    \hat{b}b\not=-1, \ v\not= none ^}\neg(\existsV\in\mathrm{ value: msg2a(b,V))
    \ msg2\mp@subsup{a}{}{\prime}}=[msg2a EX
        ^ UNCHANGED msg1a,msg1b,msg2b,maxBal, maxVBal, maxVal
13 Phase2b(a,b,v)\triangleq
    \wedgeb\not=-1^v\not= none ^ msg2a(b,v)^b\geqmaxBal(a
        \maxBal'}=[\mathrm{ maxBal EXCEPT ![a]=b]
    ^maxVBal' = [maxVBal EXCEPT ![a]=b]
    ^)maxVal'}=[\operatorname{maxVal EXCEPT ![a]=v]
    ^ UNCHANGED msg1a,msg1b,msg2a
14 Init\triangleq \triangleq }\forallA\in\mathrm{ acceptor: }B\in\mathrm{ ballot:
    ^ ᄀmsg1a(B)
```



```
        \wedge \forallV\in value: }\negmsg2a(B,V)^\negmsg2b(A,B,V
        maxBal(A)=-1
=-1^maxVal(A) = none
15 Next}\triangleq\existsA\in\mathrm{ acceptor: }B\in\mathrm{ ballot: }V\in\mathrm{ value 
    Phase1a(B) \vee Phase1b(A,B)
    \vee Phase1a(B)
```

16 Safety $\triangleq \forall V_{1}, V_{2} \in$ value : $\operatorname{chosen}\left(V_{1}\right) \wedge \operatorname{chosen}\left(V_{2}\right) \rightarrow V_{1}=V_{2}$

Hierarchical Structure

State-space Size

(2 values, 3 acceptors, 3 quorums, 4 ballots)

Use Hierarchical Structure to counter Complexity

Hierarchical Strengthening

Property

Proving Paxos Automatically

Input Strengthening Assertions

none
$\boldsymbol{A}_{1}=\forall \mathrm{A} \in$ acceptor, $\mathrm{B} \in$ ballot, $\mathrm{V} \in$ value: $\operatorname{votes}(\mathrm{A}, \mathrm{B}, \mathrm{V}) \rightarrow \operatorname{isSafeAt}(\mathrm{B}, \mathrm{V})$

$$
\begin{aligned}
\boldsymbol{A}_{\mathbf{2}}= & \forall A \in \text { acceptor, } B \in \text { ballot, } \mathrm{V}_{1}, \mathrm{~V}_{2} \in \text { value: } \\
& \operatorname{chosenAt}\left(\mathrm{B}, \mathrm{~V}_{1}\right) \wedge \operatorname{votes}\left(\mathrm{A}, \mathrm{~B}, \mathrm{~V}_{2}\right) \rightarrow\left(\mathrm{V}_{1}=\mathrm{V}_{2}\right)
\end{aligned}
$$

\boldsymbol{A}_{1} : If an acceptor voted for value V in ballot number B, then V is safe at B.
$\boldsymbol{A}_{\mathbf{2}}$: If value V is chosen at ballot B, then no acceptor can vote for a value different than V in B.

Proving Paxos Automatically

$$
\begin{aligned}
\boldsymbol{A}_{3}= & \forall \mathrm{B} \in \text { ballot, } \mathrm{V} \in \text { value: } \\
& \operatorname{msg} 2 a(\mathrm{~B}, \mathrm{~V}) \rightarrow \operatorname{isSafeAt}(\mathrm{B}, \mathrm{~V})
\end{aligned}
$$

$\boldsymbol{A}_{4}=\forall \mathrm{B} \in$ ballot, $\mathrm{V}_{1}, \mathrm{~V}_{2} \in$ value:

$$
m s g 2 a\left(\mathrm{~B}, \mathrm{~V}_{1}\right) \wedge m s g 2 a\left(\mathrm{~B}, \mathrm{~V}_{2}\right) \rightarrow\left(\mathrm{V}_{1}=\mathrm{V}_{2}\right)
$$

$\boldsymbol{A}_{5}=\forall \mathrm{A} \in$ acceptor, $\mathrm{B} \in$ ballot, $\mathrm{V} \in$ value:

$$
m s g 2 b(\mathrm{~A}, \mathrm{~B}, \mathrm{~V}) \rightarrow m s g 2 a(\mathrm{~B}, \mathrm{~V})
$$

$\boldsymbol{A}_{6}=\forall A \in$ acceptor, $B \in$ ballot:

$$
\operatorname{msg1a}(\mathrm{A}, \mathrm{~B}) \rightarrow \operatorname{maxBal}(\mathrm{A}) \geq \mathrm{B}
$$

$\boldsymbol{A}_{\mathbf{3}}$: If ballot B leader sends a $2 a$ message for value V, then V is safe at B.
\boldsymbol{A}_{4} : A ballot leader can send $2 a$ messages only for a unique value.
\boldsymbol{A}_{5} : If an acceptor voted for a value in ballot B, then there is a $2 a$ message for that value at B.
\boldsymbol{A}_{6} : If an acceptor has sent a $1 b$ message at a ballot B, then its maxBal is at least as high as B.

Proving Paxos Automatically

Input Strengthening Assertions

none
$A_{1} A_{2}$
$\boldsymbol{A}_{7}=\forall \mathrm{A} \in$ acceptor, $\mathrm{B}, \mathrm{B}_{\max } \in$ ballot, $\mathrm{V}_{\max } \in$ value:

$$
\begin{aligned}
(\mathrm{B}>-1) \wedge\left(\mathrm{B}_{\max }>-1\right) & \wedge \\
& m \operatorname{sg} 1 b\left(\mathrm{~A}, \mathrm{~B}, \mathrm{~B}_{\max }, \mathrm{V}_{\max }\right) \\
& \rightarrow \operatorname{msg} 2 b\left(\mathrm{~A}, \mathrm{~B}_{\max }, \mathrm{V}_{\max }\right)
\end{aligned}
$$

$\boldsymbol{A}_{\mathbf{8}}=\forall \mathrm{A} \in$ acceptor, $\mathrm{B}, \mathrm{B}_{\text {mid }}, \mathrm{B}_{\max } \in$ ballot, $\mathrm{V}, \mathrm{V}_{\max } \in$ value:
$\left(\mathrm{B}>\mathrm{B}_{\text {mid }}>\mathrm{B}_{\max }\right) \wedge \operatorname{msg1b}\left(\mathrm{A}, \mathrm{B}, \mathrm{B}_{\max }, \mathrm{V}_{\max }\right)$

$$
\rightarrow \neg m s g 2 b\left(\mathrm{~A}, \mathrm{~B}_{\text {mid }}, \mathrm{V}\right)
$$

\boldsymbol{A}_{7} : If an acceptor issued a $1 b$ message at ballot B with the maximum vote ($B_{\max }, V_{\max }$), and both B and $B_{\max }$ are higher than -1 , then the acceptor has voted for value $V_{\max }$ in ballot $B_{\max }$.
$\boldsymbol{A}_{\mathbf{8}}$: If an acceptor issued a $1 b$ message at ballot B with the maximum vote ($B_{\max }, V_{\max }$), then the acceptor cannot have voted in any ballot number strictly between $B_{\text {max }}$ and B.

Proving Paxos Automatically

Input Strengthening Assertions

none
$\boldsymbol{A}_{\boldsymbol{g}}=\forall \mathrm{A} \in$ acceptor: $\operatorname{maxVBal}(\mathrm{A}) \leq \operatorname{maxBal}(\mathrm{A})$
$\boldsymbol{A}_{10}=\forall \mathrm{A} \in$ acceptor, $\mathrm{B} \in$ ballot, $\mathrm{V} \in$ value: $m s g 2 b(\mathrm{~A}, \mathrm{~B}, \mathrm{~V}) \rightarrow \operatorname{maxVBaI}(\mathrm{A}) \geq \mathrm{B}$
$\boldsymbol{A}_{11}=\forall \mathrm{A} \in$ acceptor:
$\operatorname{maxVBal}(\mathrm{A}) \geq-1 \rightarrow \operatorname{msg} 2 b(\mathrm{~A}, \operatorname{maxVBal}(\mathrm{~A}), \operatorname{maxVal}(\mathrm{A}))$
$A_{1} \ldots A_{6}$
$A_{1} \ldots A_{8}$
$\boldsymbol{A}_{\boldsymbol{g}}$: maxVBal of an acceptor is less than or equal to its maxBal.
\boldsymbol{A}_{10} : If an acceptor voted in a ballot B, then its maxVBal is at least as high as B.
A_{11} : If acceptor A has its maxVBal higher than -1 , then A has already cast a vote (maxVBal(A), maxVal(A)).

Proving Paxos Automatically

Proving Paxos Automatically

A_{1} : If an acceptor voted for value V in ballot B, then V is safe at B.
A_{2} : If value V is chosen at ballot B, then no acceptor can vote for a value different than V in B.
A_{3} : If ballot B leader sends a $2 a$ message for value V, then V is safe at B.
A_{4} : A ballot leader can send $2 a$ messages only for a unique value.
A_{5} : If an acceptor voted for a value in ballot B, then there is a $2 a$ message for that value at B.
A_{6} : If an acceptor has sent a $1 b$ message at a ballot B, then its maxBal is at least as high as B.
A_{7} : If an acceptor issued a $1 b$ message at ballot B with the maximum vote ($B_{\max }, V_{\max }$), and both B and $B_{\max }$ are higher than -1 , then the acceptor has voted for value $V_{\max }$ in ballot $B_{\text {max }}$.
A_{8} : If an acceptor issued a $1 b$ message at ballot B with the maximum vote $\left(B_{\max }, V_{\max }\right)$, then the acceptor cannot have voted in any ballot number strictly between $B_{\text {max }}$ and B.
A_{g} : maxVBal of an acceptor is less than or equal to its maxBal.
A_{10} : If an acceptor voted in a ballot B, then its maxVBal is at least as high as B.

Summary

Automatically Verify Distributed Protocols

Finite-Domain Model Checking

Spatial \& Temporal Regularity Boost Clause Learning

Regularity \leftrightarrow Quantification

Hierarchical Strengthening

8
Provable Correctness \& Assurance

Independently-Checkable Proofs/Traces

No Undecidability Issues

Compact Quantified Inductive Invariants

High Scalability

IC3PO IC3 for Proving Protocol Properties
 GitHub github.com/aman-goel/ic3po
ar×iv arxiv.org/abs/2108.08796

