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Distributed Protocol  Architectural Blueprint
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Why Verify?
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July 23, 2021

October 1, 2021

https://www.datacenterdynamics.com/en/news/akamai-outage-was-due-to-dns-bug/
https://www.cnbc.com/2021/10/01/defi-protocol-compound-mistakenly-gives-away-millions-to-users.html
https://twitter.com/Mudit__Gupta/status/1443454935639609345
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ToyConsensus Protocol1 in TLA+

Actions

Initial States

Transition Relation

Safety Property

Global axiom

Definitions

State variables

Domains

[1] Ken McMillan, “Toy Consensus in the Ivy language.” https://github.com/microsoft/ivy/blob/master/examples/ivy/toy_consensus.ivy
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Verifying Distributed Protocols

Challenges              

▪ Infinite State Space

▪ Reasoning is Hard/Undecidable

▪ Not Scalable

At most one leader 
at all times

...B C D

α γ

E

...

Voters

Candidates

A

δβ
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IC3PO: IC3 for Proving Protocol Properties

IC3PO
Protocol Specification

+
Property

Execution Trace

Proof Certificate

obeyed under 
ALL executions

can reach 
the bug
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i.e., Inductive Invariant



IC3PO’s Key Ingredients

Spatial Regularity Symmetry Boosting using Protocol’s Domain Symmetries

Temporal Regularity Range Boosting over Totally-ordered Domains

Hierarchical Structure Hierarchical Strengthening for High Scalability
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Regularity ↔ Quantification Compact Quantified Clause Learning

Finite-Domain Model Checking

While large sets can cause performance problems, it's rare for an algorithm
to be correct for a set of 3 elements and not for a set of 1000 elements.



IC3PO: IC3 for Proving Protocol Properties
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RegIC3
Regularity-aware IC3
Quantified Clause Learning

Auto-Increase Size

..B C D

α β γ δ

E

..
A

Unbounded Protocol
+

Property

Initial Size

3 x 2 x

B C

α β

A

Finite Instance

IC3PO

Quantified Inductive Proof
for 

Unbounded Protocol

Execution Trace 
on a 

Finite Instance

Cex

Finite Convergence

Reached Cutoff?

Inv
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. . .B C D

α β γ γ

E

. . .

Finite-Domain Model Checking

Voters

Candidates

A B C

α β

A

Voters3

Candidates2

Unbounded Protocol

Finite Instance

Challenges              

Infinite State Space

Reasoning is Hard/Undecidable

Not Scalable

Benefits              

Finite State Space

Always Decidable

Fast reasoning with SMT solvers

3 x 2 x

State-space size = unbounded

State-space size = 28
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Symmetry Boosting for Symmetric Domains

• All domain elements can be permuted arbitrarily

• Learn all symmetrically-equivalent clauses without any additional reasoning

• Compact quantified clauses

A B C

α β

Voters3

Candidates2

Finite Instance

A

α β

B

α β

C

α β

All voters are symmetrically-equivalent
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Relating Symmetry with Quantification

Form Clause Boosted Clause

 clause1 = ¬vote(A, α) ˅ ¬vote(A, β) Quantified(clause1) =  X ϵ Voters3: ¬vote(X, α) ˅ ¬vote(X, β)

 clause2 = vote(A, α) ˅ vote(B, α) ˅ vote(C, α) Quantified(clause2) =  Y ϵ Voters3: vote(Y, α)

  clause3 = ¬vote(A, α) ˅ vote(B, α) ˅ vote(C, α) Quantified(clause2) =  X ϵ Voters3:  Y ϵ Voters3: 

¬vote(X, α) ˅ [ (X ≠ Y)  vote(Y, α) ]

  

clause4 = ¬leader(α) ˅ chosenAt(qAB, α) ˅
chosenAt(qAC, α) ˅
chosenAt(qBC, α)

Quantified(clause4) =  C ϵ Candidates2:  Q ϵ Quorum3: 

¬leader(C) ˅ chosenAt(Q, C)

=  C ϵ Candidates2:  Q ϵ Quorum3:

¬leader(C) ˅ [  X ϵ Voters3: vote(X, C) ]
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Voting Protocol1 in TLA+

[1] Leslie Lamport, “The Voting protocol.” https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Voting.tla 12



13

Totally-Ordered Domains

Voters

Candidates

Unbounded Protocol

0                                1                                                           N = ∞
ballot

..B C D

α β γ ..

A

0 0 0

..B C D

α β γ ..

A

1 1 1

..B C D

α β γ ..

A

N N N...

Challenges              

Cannot be permuted arbitrarily

Unsafe combinations due to special elements

Solution              

Respect the total order

Respect reachability constraints
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Finite-Domain Model Checking

Voters

Candidates

Unbounded Protocol

Finite Instance

0                                1                                                           N = ∞
ballot

..B C D

α β γ ..

A

0 0 0

..B C D

α β γ ..

A

1 1 1

..B C D

α β γ ..

A

N N N...

3 x 2 x 4 x

Voters3

Candidates2

0                        1                        2                       3
ballot4

B C

α β

A

0 0

B C

α β

A

1 1

B C

α β

A

2 2

B C

α β

A

3 3
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Boosting for Totally-Ordered Domains

Finite Instance B

α

A

1 1

β

C

2
clause = chosen(α, 1) → ¬vote(C, β, 2)

B

α

A

0 0

β

C

1

B

α

A

0 0

β

C

2

B

α

A

0 0

β

C

3

B

α

A

1 1

β

C

2

B

α

A

1 1

β

C

3

B

α

A

2 2

β

C

3

Voters3

Candidates2

0                        1                        2                       3
ballot4

Respect the total order, i.e., only consider ordered permutations

(1, 2)

(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3)



16

Boosting for Totally-Ordered Domains

Finite Instance B

α

A

1 1

β

C

2
clause = chosen(α, 1) → ¬vote(C, β, 2)

B

α

A

0 0

β

C

1

B

α

A

0 0

β

C

2

B

α

A

0 0

β

C

3

B

α

A

1 1

β

C

2

B

α

A

1 1

β

C

3

B

α

A

2 2

β

C

3

Voters3

Candidates2

0                        1                        2                       3
ballot4

Respect reachability constraints, i.e., check unreachability with additional SMT queries

(1, 2)

(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3)

Is (0, 1) reachable? Is (0, 2) reachable? Is (0, 3) reachable? Is (1, 2) reachable? Is (1, 3) reachable? Is (2, 3) reachable?
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Range Boosting for Totally-Ordered Domains

Finite Instance B

α

A

1 1

β

C

2
clause = chosen(α, 1) → ¬vote(C, β, 2)

B

α

A

1 1

β

C

2

B

α

A

1 1

β

C

3

B

α

A

2 2

β

C

3

Voters3

Candidates2

0                        1                        2                       3
ballot4

UNSAT UNSAT UNSAT

(1, 2)

(1, 2) (1, 3) (2, 3)
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Range Boosting for Totally-Ordered Domains

Finite Instance B

α

A

1 1

β

C

2
clause = chosen(α, 1) → ¬vote(C, β, 2)

B

α

A

1 1

β

C

2

B

α

A

1 1

β

C

3

B

α

A

2 2

β

C

3

Voters3

Candidates2

0                        1                        2                       3
ballot4

UNSAT UNSAT UNSAT

Safe Orbit(clause) =

[ chosen(α, 1) → ¬vote(C, β, 2) ]  

[ chosen(α, 1) → ¬vote(C, β, 3) ]  

[ chosen(α, 2) → ¬vote(C, β, 3) ]

(1, 2)

(1, 2) (1, 3) (2, 3)
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Range Boosting for Totally-Ordered Domains

Finite Instance B

α

A

1 1

β

C

2
clause = chosen(α, 1) → ¬vote(C, β, 2)

Voters3

Candidates2

0                        1                        2                       3
ballot4

Encode unreachable combinations as a quantified range constraint

Safe Orbit(clause) =

[ chosen(α, 1) → ¬vote(C, β, 2) ]  

[ chosen(α, 1) → ¬vote(C, β, 3) ]  

[ chosen(α, 2) → ¬vote(C, β, 3) ]

 X, Y ϵ ballot4 :
(0 < X < Y) → [ chosen(α, X) → ¬vote(C, β, Y) ]

≡
Quantified(clause) = 

(1, 2)



IC3PO: IC3 for Proving Protocol Properties

20

RegIC3
Regularity-aware IC3
Quantified Clause Learning

Auto-Increase Size

..B C D

α β γ δ

E

..
A

Unbounded Protocol
+

Property

Initial Size

3 x 2 x

B C

α β

A

Finite Instance

IC3PO

Quantified Inductive Proof
for 

Unbounded Protocol

Execution Trace 
on a 

Finite Instance

Cex

Finite Convergence

Reached Cutoff?

Inv
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IC3PO Human
Lower numbers are Better

# Assertions in Proof

versus

0 2 4 6 8 10 12 14 16 18

tla-TwoPhase

i4-two_phase_commit

mypyv-lockserv

ex-lockserv_automaton

mypyv-learning_switch

paxos-oopsla17_flexible_paxos

mypyv-consensus_epr

ex-distributed_lock_maxheld

mypyv-client_server_db_ae

ex-decentralized-lock

mypyv-consensus_wo_decide

distai-blockchain

mypyv-toy_consensus_epr

ex-quorum-leader-election

distai-Ricart-Agrawala

paxos-Voting

tla-SimpleRegular

tla-TCommit

mypyv-client_server_ae

tla-Consensus



Voting
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ImplicitPaxos

Paxos

MultiPaxos

SimplePaxos

Proving Paxos Automatically

29
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Use Hierarchical Structure to counter Complexity

Voting

SimplePaxos

ImplicitPaxos

Paxos

MultiPaxos

230

254

2138

2147

2280

Hierarchical Structure

Voting

ImplicitPaxos

Paxos

MultiPaxos

SimplePaxos
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High Level Spec

Low Level Spec

Property

A1 … Ak InvHigh = Property  A1  …  Ak

Ak+1 … An
InvLow = Property  A1  …  Ak  Ak+1  …  An

New PropertyLow = Property  A1  …  Ak

Hierarchical Strengthening



32

Voting

Property

{A1 A2}

Input Strengthening Assertions

none

A1:   If an acceptor voted for value V in ballot number B, 
then V is safe at B.

A2:   If value V is chosen at ballot B, then no acceptor 
can vote for a value different than V in B.

A1 =  A ϵ acceptor, B ϵ ballot, V ϵ value:

votes(A, B, V) → isSafeAt(B, V)

A2 =  A ϵ acceptor, B ϵ ballot, V1, V2 ϵ value:

chosenAt(B, V1)  votes(A, B, V2) → (V1 = V2)

Proving Paxos Automatically
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A3 =  B ϵ ballot, V ϵ value:

msg2a(B, V) → isSafeAt(B, V)

A4 =  B ϵ ballot, V1, V2 ϵ value:

msg2a(B, V1) msg2a(B, V2) → (V1 = V2)

A5 =  A ϵ acceptor, B ϵ ballot, V ϵ value:

msg2b(A, B, V) → msg2a(B, V)

A6 =  A ϵ acceptor, B ϵ ballot:

msg1a(A, B) → maxBal(A)  B

A3:   If ballot B leader sends a 2a message for value V, 
then V is safe at B.

A4:   A ballot leader can send 2a messages only for a 
unique value.

A5:   If an acceptor voted for a value in ballot B, then 
there is a 2a message for that value at B.

A6:   If an acceptor has sent a 1b message at a ballot B, 
then its maxBal is at least as high as B.

Voting

SimplePaxos

{A1 A2}

{A3 A4 A5 A6}

Input Strengthening Assertions

none

A1 A2

Proving Paxos Automatically

Property
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A7 =  A ϵ acceptor, B, Bmax ϵ ballot, Vmax ϵ value:
(B > -1)  (Bmax > -1) msg1b(A, B, Bmax, Vmax) 

→ msg2b(A, Bmax, Vmax)

A8 =  A ϵ acceptor, B, Bmid, Bmax ϵ ballot, V, Vmax ϵ value:
(B > Bmid > Bmax) msg1b(A, B, Bmax, Vmax) 

→ ¬ msg2b(A, Bmid, V)

A7:   If an acceptor issued a 1b message at ballot B with 
the maximum vote (Bmax , Vmax), and both B and  
Bmax are higher than −1, then the acceptor has 
voted for value Vmax in ballot Bmax.

A8:   If an acceptor issued a 1b message at ballot B with 
the maximum vote (Bmax , Vmax), then the acceptor 

cannot have voted in any ballot number strictly 
between Bmax and B.

Voting

SimplePaxos

ImplicitPaxos

{A1 A2}

{A3 A4 A5 A6}

{A7 A8}

Input Strengthening Assertions

none

A1 A2

A1 … A6

Proving Paxos Automatically

Property
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A9 =  A ϵ acceptor: maxVBal(A) maxBal(A)

A10 =  A ϵ acceptor, B ϵ ballot, V ϵ value:

msg2b(A, B, V) → maxVBal(A)  B

A11 =  A ϵ acceptor:

maxVBal(A)  -1 → msg2b(A, maxVBal(A), maxVal(A))

A9:     maxVBal of an acceptor is less than or equal to its 
maxBal.

A10:   If an acceptor voted in a ballot B, then its maxVBal
is at least as high as B.

A11:   If acceptor A has its maxVBal higher than −1, then 
A has already cast a vote (maxVBal(A), maxVal(A)).

Voting

SimplePaxos

ImplicitPaxos

Paxos

{A1 A2}

{A3 A4 A5 A6}

{A7 A8}

{A9 A10 A11}

Input Strengthening Assertions

none

A1 A2

A1 … A6

A1 … A8

Proving Paxos Automatically

Property
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Voting

SimplePaxos

ImplicitPaxos

Paxos

MultiPaxos

{A1 A2}

{A3 A4 A5 A6}

{A7 A8}

{A9 A10 A11}

Input Strengthening Assertions

none

A1 A2

A1 … A6

A1 … A8

A1 … A11

Proving Paxos Automatically

Property

Proved!
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Proving Paxos Automatically

A1:   If an acceptor voted for value V in ballot B, then V is safe at B.

A2:   If value V is chosen at ballot B, then no acceptor can vote for a value different than V in B.

A3:   If ballot B leader sends a 2a message for value V, then V is safe at B.

A4:   A ballot leader can send 2a messages only for a unique value.

A5:   If an acceptor voted for a value in ballot B, then there is a 2a message for that value at B.

A6:   If an acceptor has sent a 1b message at a ballot B, then its maxBal is at least as high as B.

A7: If an acceptor issued a 1b message at ballot B with the maximum vote (Bmax , Vmax), and both B and Bmax are higher than  
−1, then the acceptor has voted for value Vmax in ballot Bmax.

A8:   If an acceptor issued a 1b message at ballot B with the maximum vote (Bmax , Vmax), then the acceptor cannot have voted 
in any ballot number strictly between Bmax and B.

A9:     maxVBal of an acceptor is less than or equal to its maxBal.

A10:   If an acceptor voted in a ballot B, then its maxVBal is at least as high as B.

A11:   If acceptor A has its maxVBal higher than −1, then A has already cast a vote (maxVBal(A), maxVal(A)).
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Summary

Automatically Verify Distributed Protocols

Provable Correctness & Assurance

Independently-Checkable Proofs/Traces

Finite-Domain Model Checking

Spatial & Temporal Regularity

Hierarchical Strengthening

Regularity ↔ Quantification

High Scalability

Compact Quantified Inductive Invariants

Boost Clause Learning

No Undecidability Issues

github.com/aman-goel/ic3po

arxiv.org/abs/2108.08796

https://github.com/aman-goel/ic3po
https://github.com/aman-goel/ic3po
https://arxiv.org/abs/2103.14831
https://arxiv.org/abs/2108.08796

